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ABSTRACT OF THE DISSERTATION

Monotone Input/Output Systems, and Applications to

Biological Systems

by German A. Enciso

Dissertation Director: Eduardo Sontag

Monotone systems in abstract Banach spaces have strong stability and convergence

properties and have been studied in various contexts, especially since the work of Hirsch

in the 1980’s [48, 49]. In this dissertation we generalize a framework to study the

global attractivity of certain abstract, non-monotone systems via monotone systems

methods, by considering the concept of a monotone system with inputs and outputs.

This method is applied to various quantitative models from molecular biology, in the

finite dimensional case as well as in the case of systems with time delays. We develop and

implement an algorithm to decompose non-monotone systems as the negative feedback

loop of controlled monotone systems which fit into this framework.

The concept of inputs and outputs is also used in the positive feedback case to study

the stability of arbitrary monotone systems. We establish an algorithm to determine

the number of equilibria of finite dimensional strongly monotone systems as well as to

determine the stability behavior of these equilibria. Using the properties of monotone

systems, we then generalize these results to the case of delay and reaction diffusion

systems. The result is a graphic approach useful for the study of the dynamics of

complex positive feedback models.

We also study the generic convergence to equilibrium of abstract strongly monotone
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systems, give a self-contained presentation of the subject of monotone systems, consider

several other topics related to the subject of monotone systems, and present possible

further work.
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Preface: From Tycho Brahe To Microarrays

How does mathematics fit into modern biology research? Long gone are the frog dis-

sections and the classification of birds. The new biology establishment, with an army

of white-lab-coated experts and billions of dollars in funding from enormous funding

agencies such as the NIH and the NSF, has found formidable opponents in the form of

microscopic bacteria, transparent worms and fruit flies. The challenge: to understand,

at the molecular level, the very mechanisms that allow such organisms to function.

New technologies such as mRNA microarrays, as well as the increasing sophistication

of older ones like X-ray crystallography, have made increasingly feasible what seemed

far-fetched just a few years ago. Recent efforts are made towards an integrative ap-

proach, modeling quantitatively the entire molecular process once the key players have

been identified and once the basic interactions have been found. Classic examples of

such molecular processes are the digestion of lactose in E. Coli bacteria, and the way

that a protein binding to the membrane of skin cells triggers cell division. Some of the

effects that are observed lie outside of the expertise of the biologist, and fall within that

of the control theorist, physicist or engineer. An abstraction of some of these models

and problems can also become the field of study for a mathematician.

A parallel problem of a more philosophical nature is the following. There are obvious

structural similarities among different gene networks (as these ‘molecular processes’ are

also called), for instance the facts that they are usually based on the expression of

proteins and use mRNA molecules as intermediaries (being often regulated through so-

called transcription factors, etc). But the dynamics produced by these systems seems to

be quite varied depending on the task at hand, and the way that Nature has chosen to

solve a given problem sometimes appears to be quite arbitrary. The problem is whether

gene networks are biased towards a certain underlying structure, beyond that provided

by their physical implementation. This is very related to a more practical question,
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namely what mathematical tools can be best used for a formal analysis of gene network

models; this is also why a mathematician may have a useful point of view to address

that question.

There is a common metaphor comparing modern biology with astronomy. During

the late 16th century, the Danish astronomer Tycho Brahe spent much of his life making

the most accurate astronomical measurements of his time. After his death, Johannes

Kepler spent many years studying these measurements, and he finally proposed three

simple laws according to which the motion of the planets could be predicted. Later

on, Newton would be able to provide general physical laws that imply Kepler’s as a

particular case. In the same way in biology, a challenge for a mathematician can be to

participate in the search for such an ‘underlying order’, at the same time as obtaining

inspiration from biology to create new mathematics with an interest of their own.

It is important to realize that in spite of the new tools and the available information,

quantitative modeling continues to be a controversial undertaking in mainstream biol-

ogy. The reason: only the dynamics of the simplest and very best understood processes

can be reliably predicted quantitatively at this point. The mainstream biologist still

concentrates on the foundations: what genes and proteins participate in what processes,

what is the overall effect of the over- or underexpression of a protein, and so on. The

same sobering comment can be said about the search for some underlying order in the

dynamics of molecular systems: we may well still be in Tycho Brahe’s time rather than

in Kepler’s (let alone Newton’s) and many physicists and biologists are skeptic about

whether such general principles exist at all.

On the other hand, one can argue that the reason why quantitative modeling doesn’t

replicate the behavior of most systems is not that it is fundamentally the wrong tool,

but rather that we don’t have the necessary information to incorporate into the models.

Thus as a theoretician one can nevertheless prepare the ground by finding general tools

and algorithms, to be applied when the time is ripe in a few decades. Such a strategy

doesn’t sound nearly as misguided if one considers that the average drug takes about

15 years to develop from the lab into the market.

This dissertation addresses one possible modeling tool, namely measuring a given
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gene network by the extent to which it differs from a monotone system. This approach is

successful to the extent to which the structure of gene networks is compatible with that

point of view; in that respect, this work is but one possible answer to both problems

stated above.
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Chapter 1

Introduction

1.1 Monotonicity and Biological Systems

The dynamical systems that arise in models of molecular biology have several character-

istics that distinguish them from more traditional models, say, from classical mechanics.

1. They tend to have a very large number of variables, in the order of a dozen for the

simplest realistic models, up to several hundreds (or more) for the more ambitious

ones that may encompass all proteins and genes involved, as well as metabolites,

different types of RNA molecules, etc. This factor alone makes most of these

systems quite intractable from a formal viewpoint, even when the form of the

functions involved and the values of all parameters are fixed.

2. For all their complexity, these systems tend to present remarkably simple dynam-

ics: global attractivity towards one or multiple equilibria seems the most common

behavior, followed by generically attractive periodic orbits. One reason may be

that most of these models are quite simplified compared with their real-world

counterparts. But there is reason to believe that such stable behavior is actually

encouraged by natural selection, so that molecular processes can work reliably

under different circumstances.

3. A third property that characterizes biological systems is that the direct effect

that one given variable in the model has over another is often either consistently

inhibitory or consistently promoting. Thus, if protein A binds to the promoter

region of gene B, it usually does so either to consistently prevent the transcription

of the gene or to consistently facilitate it.
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Consider an ordinary differential equation

ẋ = F (x) (1.1)

(in the biological interpretation, x = x(t) is a vector each of whose components xi(t)

indicates the concentration of compound i at time t). Then Condition 3 amounts to

requiring that for every i, j = 1 . . . n, i 6= j, the partial derivative ∂Fi/∂xj be either ≥ 0

at all states or ≤ 0 at all states. Note that this nevertheless doesn’t prevent protein A

from having an indirect influence (through other molecules) that can ultimately lead

to the opposite effect on gene B.

One way to exploit Conditions 2 and 3, as will be seen below, is by using the concept

of monotonicity. Consider a partial order ≤ defined on Rn. System (1.1) is said to be

monotone with respect to ≤ if x0 ≤ y0 implies x(t) ≤ y(t) for every t ≥ 0 (where

x(t), y(t) are the solutions of (1.1) with initial conditions x0, y0, respectively). Of

course, a system may be monotone or not depending on the partial order at hand. It

will be said to be simply monotone if the order is clear from the context.

Positive and Negative Feedback

Monotonicity (with respect to nontrivial orders) is a strong condition to ask from a

dynamical system. It turns out to restrict the possible dynamics of the system sub-

stantially. It provides a large amount of information about its stability behavior: at-

tractive periodic orbits are ruled out, for instance, and under different types of cir-

cumstances most or all solutions converge towards some equilibrium – see [101] and

Chapter 3. Monotonicity is therefore also appealing in light of the Condition 2 for

molecular processes described above, since it may be possible to describe the relatively

tame behavior of such systems in terms of their monotonicity or the monotonicity of

closely related systems.

Nevertheless, most large systems arising in biology (or elsewhere) are likely not to

be monotone with respect to any orthant order. In order to address this we consider

controlled dynamical systems, which are systems with an additional parameter u ∈ Rm,
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and which have the form

ẋ = f(x, u). (1.2)

The values of u over time are specified by means of a function t → u(t) ∈ Rm, t ≥ 0,

called an input. Thus each input defines a time-dependent dynamical system in the

usual sense. The consideration of systems with inputs is key to the understanding of

cascades of systems and, more generally, the study of large-scale systems as intercon-

nections of smaller systems. (Indeed, it would be impossible to even define the notion

of “interconnection” if inputs, and outputs, were not considered in the formalism.)

Moreover, the study of responses (input/output behavior in the sense of control theory,

see [106]) requires such a formalism as well.

To system (1.2), we often associate a feedback function h : Rn → Rm, which is

usually used to create the closed loop system ẋ = f(x, h(x)).

Given orders ≤p and ≤q for Rn and Rm respectively, we say that a feedback function

h is positive if x ≤p y implies h(x) ≤q h(y), and that it is negative if x ≤p y implies

h(y) ≤q h(x). It can be shown (Chapter 6) that the closed loop of a monotone system

with a positive feedback function is actually itself monotone, so that no system can be

produced in this way that was not monotone already. Nevertheless writing a monotone

system as the positive feedback loop of a controlled monotone system turns out to be

of use when studying its long-term behavior, as will be described in Chapters 6 and 7.

On the other hand, writing a non-monotone system as the closed loop of a monotone

controlled system under negative feedback opens the possibility to apply some of the

arguments from monotone systems theory to such systems. This will be the framework

of Chapter 2 (implicitly) as well as Chapters 4 and 5.

In the remainder of this introduction, an outline of each of the chapters will be

given.

1.2 Testosterone Dynamics

Chapter 2 is a self contained discussion of a delay dynamical system, which uses many of

the ideas that will be treated more rigorously in Chapters 4 and 5. Any explicit mention
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of monotone systems has been intentionally left out for this introductory discussion.

The material in this chapter (see [32]) is also interesting because of its relationship

to the classic textbook by J. Murray Mathematical Biology [77]. One of the sections

of this book considers this model and concludes the existence of periodic solutions for

certain choices of the parameter values. The main conclusion of Chapter 2 is that in

fact the system is globally attractive to equilibrium for all parameter values, in what

apparently was an error that went unnoticed since the first edition of this book in 1989.

1.3 Monotone Systems

Chapter 3 is a self contained introduction to monotone systems, which may appear at

first unnecessary in the presence of standard references such as [101], [10] but is done for

two reasons. The first reason is to expose the reader to what are arguably some of the

most important results of the theory in a survey-like manner. Special attention is given

to those results that will appear in the subsequent chapters. At the same time, part

of the material in this chapter actually generalizes the results from these references, or

else it is devoted to proving the results in a concise and clear manner while filling a few

gaps in between.

Section 3.1 gives a formal introduction to cones, monotonicity, and the various

classes of matrices involved. Section 3.3 introduces the omnipresent Perron Frobenius

and Krein Rutman theorems, and it discusses their relationship to monotone systems by

providing statements and (our own) proofs for quasimonotone matrices and operators.

These latter theorems are very useful but hard to find in the literature in general form.

Section 3.2 discusses the so called Volkmann condition, which is a useful way to verify

the monotonicity of a system with respect to an abstract cone. Section 3.5 is a very

short introduction to convergence results, which are perhaps the specialty of the field,

and which were pioneered by M. Hirsch in the 1980’s. Section 3.6 is a discussion of the

sobering argument by Smale, which provides many counterexamples to conjectures in

the theory. Sections 3.7 and 3.8 have the objective to discuss two key facts, namely that

in a certain sense the stability of an equilibrium in a monotone system doesn’t change
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after adding or eliminating diffusion or delays. The argument in Section 3.7 is given

for abstract cones, as opposed to the cooperative cone assumed in [101] (definition

in Section 3.1), although such a result is also found in [58]. Section 3.8 presents a

very similar properly for equilibria after adding or eliminating diffusion, which is here

generalized to abstract cones and general monotone (as opposed to strongly monotone)

systems.

1.4 The Small Gain Theorem

The subject of the stability and global attractivity of dynamical systems has been

extensively studied since the end of the 19th century, and it has grown into a vast

theory with branches and applications in numerous disciplines. The last few years have

seen the ever increasing appearance of large scale dynamical systems (for instance in

biological applications), often in the form of complex systems of equations spanning

over dozens of variables. Many of these systems are not realistically tractable using

traditional approaches like phase plane analysis and Lyapunov functions. The difficulty

is compounded when the system in question has delay or diffusion components built

into it. Usually the tools used are linearization around the equilibria to study local

stability, and more often numerical simulation with the computer. But the former tool

doesn’t provide conclusive evidence at the global level, and the latter may not provide

enough insight into the inner workings of the model.

The paper Angeli and Sontag [6] introduced an approach for establishing sufficient

conditions under which certain dynamical systems (1.1), described by ordinary differ-

ential equations, are guaranteed to have a globally attractive equilibrium. Consider

a controlled dynamical system (1.2) which is monotone with respect to cones in the

input and state spaces U,X (see Section 1.1). Let h : X → U be a negative feedback

function, that is, x ≤ y implies h(x) ≥ h(y). Let kX : U → X be such that for every

fixed value of u0, the associated autonomous system ẋ = f(x, u0) is globally attractive

towards kX(u0). Define k(u) := h(kX(u)), and consider the discrete system

un+1 = k(un). (1.3)
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Angeli and Sontag showed in the scalar input case (see Theorem 3 of [6] for details)

that if this discrete system is globally attractive towards ū, then the closed loop system

ẋ = f(x, h(x)) (1.4)

converges globally towards kX(ū).

Note that even though the ideas of monotone system theory are used, this result

involves the stability of a system which is not monotone.

Chapters 4 and 5 of this dissertation address this method to prove the global at-

tractivity to equilibrium of other non-monotone dynamical systems. Also, recall from

above that Chapter 2 itself contains many of the ideas in a self contained manner for a

first reading.

The results of Angeli and Sontag [6] are generalized in several directions: (i) we

address the stability of the closed loop system, which was not done in [6]; (ii) we

prove results which are novel even in the finite-dimensional case, in particular allow-

ing the consideration of systems with multiple inputs and outputs; and (iii) we extend

considerably the class of systems to which the theory can be applied and the above

characterization holds, by formulating our definitions and theorems in an abstract Ba-

nach space setting. The extension to Banach space forces us to develop very different

proofs, but it permits the treatment of delay-differential and other infinite-dimensional

systems. In addition, we work out a number of interesting examples, exploit a useful

necessary and sufficient condition for monotonically decreasing discrete systems to be

globally attractive, which leads to sufficient tests for stability of our negative feedback

loops, and study a procedure for decomposing a system as the negative feedback closed

loop of a monotone controlled system (Section 5.3). We rely on basic results from the

theory of monotone systems, all of which are included in Chapter 3.

There has been previous work that remarked upon special cases of the relationship

in asymptotic behavior between continuous systems and associated discrete systems of

the type discussed above (which is not to be confused with, for instance, a Poincare

map associated to the system). Indeed, in [100], Smith studied a cyclic gene model with

repression, and observed how a certain discrete system seemed to mirror the continuous
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model’s dynamics, both at the local and the global level. The setup of feedback loops

around monotone control systems provides one appealing formalization of this remark,

and the repression model in question will be used as an illustration of our main result.

Related work has been carried out by Chow and Mallet-Paret, and surveyed by Tyson

and Othmer [16, 110].

The organization of these two chapters is as follows. In Section 4.1, the general

framework is built, and the hypotheses are discussed. In Section 4.2, the main result

is proven in an abstract framework, and in Section 4.3 the stability of the closed loop

system is addressed. In Section 5.1 an introduction to delay controlled systems is given

at length, and sufficient conditions are given for such a system to satisfy the general

hypotheses. Two applications of the main result are also given. Section 5.2 is the main

application, a discussion of a delay model of the lac operon in E. Coli from a paper by

Mahaffy [69]. The stability results from that paper are re-derived and extended as a

corollary of the main results of our Section 4.2.

Section 5.3 is a self contained section which formalizes the algorithm given in Sec-

tion 1.1 in finite dimensions, to decompose an autonomous system as the negative

feedback loop of a monotone controlled system.

1.5 Multistability under Positive Feedback

A major long term objective of the program of this dissertation is to study complex

dynamical systems by decomposing them in terms of controlled monotone systems.

Therefore it is important to consider complex monotone systems themselves as a starting

point and to decompose them to gain as much understanding as possible. As we have

seen, it is not necessary for all interactions to be positive in order for a system to be

monotone with respect to some well-chosen order. Intuitively speaking, one can think

of a (strongly) monotone system as being such that all (or most) solutions converge

towards one or more equilibria (positive feedback is widely understood to be related to

multistability). Therefore the number and stability of the equilibria is a determining

factor, which will be essential in what follows.



8

Chapters 6 and 7 are devoted to considering an autonomous strongly monotone

system (1.1) and writing it as the feedback loop of a controlled monotone system (1.2)

under a positive feedback function h : X → U . The single most important insight of

these two chapters is that one can obtain information about the number of equilibria

of (1.1) and their stability by looking at a graph such as in Figure 1.5 c). This graph,

e ∈ E
π1(e)

KX(u)

h(x)

π2(e)

K(u)

π2(e1)

π2(e2)

π2(e3)

K(u)

X

a)

U

b)

X

U

c)

U

U

d)

U

Figure 1.1: Interpreting the stability of equilibria in (1.1) by using the graphs of KX(u)
and K(u). Each equilibrium e in a) corresponds to a point π1(e) = (h(e), e)) ∈
graphKX ∩ graphh in b), and to a point π2(p) = (h(e), h(e) in c). The first cor-
respondence is always a bijection, whereas the second correspondence is a bijection
provided condition (H) is satisfied, see Section 6.2. The point e is guaranteed to be
exponentially unstable if πi(e) lies on an exponentially unstable branch, but it may be
exponentially unstable even if it is on a stable branch, such as π2(e2) in d). Sufficient
and necessary conditions for a hyperbolic point e to be exponentially stable are that
both π2(e) lies on a stable branch and Red(e) is exponentially stable (see the definition
of Red(e) below).

a radiography of the system of sorts, is displayed either on the plane or in a higher-

dimensional space depending on the number of inputs used in the decomposition. To

construct it, consider the multivalued function defined as

KX(u) = {x ∈ X | f(x, u) = 0}

and imagine the point (u, x) as being ‘stable’ if x is an exponentially stable equilibrium
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of ż = f(x, u), and ‘unstable’ otherwise. The former points form what can be informally

referred to as the stable branches ofKX(u), and the latter the unstable branches. (Since

there is a certain ambiguity involved in these definitions, they won’t be used in the

formal discussion — but see the end of Section 6.4.) Then one can build the function

K(u) = {h(x) |x ∈ KX(u)},

with the branch coding inherited from KX .

It is not difficult to see that the function π1(e) = (h(e), e) forms a bijection between

the set E of equilibria of the closed loop system and the intersection of the graphs of

KX and h (Lemma 29). If a mild additional condition (H) is satisfied, then in fact

the function π2(e) = (h(e), h(e)) is a bijection between E and the fixed points of K

(Lemma 30). See once again Figure 1.5 and Section 6.2.

Let e ∈ E, and let Red(e) be the linearization of K(u) − u around (h(e), h(e))

in Figure 1.5 c) (provided this is well defined). Writing the linearization of system

(1.2) around (h(e), h(e)) in the form ẋ = Ax + Bu, C = h′(e), one can show that

Red(e) = −CA−1B − I (see Section 6.2).

In the scalar case m = 1, Red(e) is none other than k′(h(e)) − 1, where k(u) is the

branch of K(u) where (h(e), h(e)) is located. Therefore Red(e) is exponentially stable

if and only if k′(u) < 1 at h(e). See Figure 1.5 d).

This notation allows us to go further in the description of the closed loop system, by

characterizing the stability of the equilibria in terms of features of Figure 1.5 c). A cru-

cial assertion is that the exponentially stable points in E are in bijective correspondence

with the points on a stable branch of K(u) and such that Red(e) is exponentially stable

(assuming the condition (H); see Corollary 11). If E is countable and all equilibria in E

are either exponentially stable or exponentially unstable, then this implies that almost

all solutions of the system converge towards such points (see also Theorem 21).

It remains to consider the case in which there are equilibria in E which are neither

exponentially stable nor exponentially unstable. To account for these points on the

graph of K(u) we make further use of a standing assumption in this chapter, namely

the strong monotonicity of the closed loop system. This is closely related to the strong
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connectivity of the digraph associated to the system [101]. Therefore one way to en-

sure this condition is by writing the system as a cascade of smaller, strongly connected

subsystems, and by studying these systems separately. By assuming that most lin-

earizations of the closed loop system around equilibria are strongly monotone, one is

able to extend the stability correspondence between the equilibria of the closed loop

system and the fixed points of K(u); see Theorems 19 and 20, and Proposition 6.

At this point we also stress another standing assumption so far, namely that the set

E of equilibria is countable. This allows us to eliminate exponentially unstable equi-

libria from the picture, since the countable union of basins of attraction with measure

zero has itself measure zero. This assumption is commonly satisfied after eliminating

constraints such as mass conservation laws, but it is interesting in its own right (and

for applications) to consider the case of a general set E. The subject of the generic

convergence to equilibria in strongly monotone systems became a topic of its own in

this thesis and is treated in Chapter 8. One of the main results gives sufficient mild

conditions so that, in a strongly monotone system, most solutions converge towards

an equilibrium whose spectrum lies on the closed left hand side of the complex plane.

This allows us, once again, to characterize the dynamics of the system in terms of the

stability of its equilibria, which is in turn described by the function K(u) (Theorem 22).

1.6 Applications

Chapter 6 gives several detailed examples relevant to the theory developed in the pre-

vious chapter. In the last two sections, it also shows how to generalize the ideas from

the main results to delay and diffusion systems, using two very strong properties of

monotone systems detailed in Chapter 3. The first application considers a core 3-

variable gene regulation system, involving a gene and its self-promoting protein. It is

shown under realistic Michaelis-Menten reaction functions how this simple system can

present multistability, using the function K described above. The second system is a

4-variable two-protein regulation model, which is decomposed using two inputs. This

example illustrates the case in which the function K(u) = k(u) is single valued for every
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u. In this case, one can interpret Red(e) as the linearization of the system

u̇ = k(u) − u (1.5)

around the point h(e). It also holds under weak hypotheses that k(u) is a stable branch,

and that the condition (H) above holds. The arguments described above therefore

guarantee that the stability of e in the closed loop system is the same as that for h(e)

in system (1.5), and that the equilibria of both systems are in bijective correspondence.

The reduced system (1.5) associated to the two-protein model is displayed in Figure 7.5.

Since only the stable branches of the function K(u) are relevant for the interpreta-

tion of the dynamics of the closed loop system, Section 7.2 is devoted to finding this

new multivalued function in an efficient manner. Given an open cascade of monotone

systems, it is shown that to build this ‘stable branch’ function (also known as stable

equilibrium descriptor, or SED) it is enough to consider that of each step of the cas-

cade and compose them in a natural way (Lemma 37). This procedure is an iteration

of the so-called convergent input, convergent state (CICS) property, which is in fact

another interesting property of monotone systems since it doesn’t need to hold in the

non-monotone case (see [93]).

In Section 7.3, a larger-scale nine-variable model is considered using three coupled

systems of the core form studied in Section 7.1. The subsystems are coupled by letting

two proteins be transcription factors of each gene, and they still include Michaelis-

Menten kinetic terms to describe the reactions. This system is studied to verify several

technical hypotheses (condition (H), strong monotonicity of equilibria), and then it is

written as a closed cascade of smaller subsystems using the framework from Section 7.2.

Finally, a Matlab implementation is included, in which particular sets of parameters are

chosen and the graphs of K(u) are given for the analysis of the system. This underscores

the fact that computer algorithms are useful and welcome for this analysis, especially

as the systems themselves become increasingly complex.

Section 7.4 is essential because it generalizes the results of these two chapters to

the case of delay and reaction diffusion equations. Recall that in Section 3.7 it is

established (see also [101, 58]) that an equilibrium of a monotone delay system has
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the same stability as that of its corresponding equilibrium in the associated undelayed

system. This means that the function K(u) associated to the undelayed version of

a delay monotone system yields just as much information about the equilibria of the

delay system as about the system without delay. Using generic convergence results from

Chapter 8 for infinite dimensional strongly monotone systems, this implies statements

similar to the main results in Chapter 6 in the delay case.

The same ideas apply again for the reaction diffusion case in the second part of

Section 7.4, using the fact that the stability of a spatially homogeneous equilibrium in a

monotone reaction diffusion system is the same as that of the corresponding equilibrium

in the undiffused system (Section 3.8). A result by Kishimoto et al. [59] states that in a

convex domain Ω, and given a strongly cooperative system, a spatially inhomogeneous

equilibrium must necessarily be exponentially unstable. Therefore these equilibria,

which do not have a corresponding associated vector in the finite dimensional system,

don’t play a role in the behavior of the generic solution of the system, in light of the

results from Chapter 8. Similar results such as in Chapter 6 follow for the reaction

diffusion case.

In Section 7.5 it is pointed out that simple low pass filters are monotone and have a

single-valued input to output characteristic; this fact is used to generalize some special

results from Chapter 6 to cascades that include such filters. In Section 7.6 another

computer implementation is included to illustrate how the equilibria of delay systems

have the same stability as their undelayed counterparts, but that it is possible for their

respective basins of attraction to be very different from each other.

1.7 Generic Convergence

In the chapters of this dissertation devoted to multistability and positive feedback, an

approach is proposed to study the dynamics of strongly monotone systems by deter-

mining the number and stability of each of its equilibria. This approach is based on

the assumption that most if not all solutions of the system are convergent towards one

of the equilibria whose spectrum lies on the closed left hand side of the complex plane.
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In Chapter 8, this assumption is considered and studied in detail in the infinite dimen-

sional case. Indeed, Chapter 8 grew out of the problem of generalizing the results from

Chapter 6 to delay and reaction diffusion systems. Applications of it are given in the

end of Chapter 7, but the subject is of theoretical interest of its own.

Genericity

By the Smale argument that is described in Section 3.6, it is easy to see that any

nontrivial statement about the convergence of all solutions in a strongly monotone

system is bound to be false. Therefore one must talk about the convergence of a

generic solution of the system. There are several results in the literature [101, 89]

that guarantee that the set of convergent points has a dense interior – thus treating

the word generic in a topological sense. In that chapter, the efforts are concentrated

in a measure-theoretic kind of genericity, namely the concept of prevalence addressed

by Yorke et al. [51], and previously by Christensen [17]. Recall that a subset W of

a Banach space B (the notation B is used in that chapter) is shy if there exists a

compactly supported Borel measure µ on B, such that µ(W + x) = 0 for every x ∈ B.

A set is said to be prevalent if its complement is shy. This simple concept turns out to

provide a very fitting framework to the arguments given by Hirsch in his classic papers

[48, 49].

In Section 8.1, a transfer result is proven showing that if the set C of conver-

gent points is dense (weak topological genericity), then it must be prevalent (measure-

theoretic genericity). Combined with the current results in the literature about topo-

logical genericity of C, this result gives mild sufficient conditions for C to be prevalent

in a strongly monotone system.

In Section 8.2, the set of equilibria is classified as E = Es
⋃·Eu, where Eu is the set

of exponentially unstable equilibria. Then sufficient regularity conditions are given for

the generic solution of the system (in the sense of prevalence) to be convergent towards

a point in Es. These conditions involve mostly the differentiability and compactness

of the time evolution operators, and therefore they hold in many interesting cases such

as reaction diffusion and delay systems (in the latter case, possibly after making minor
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changes to the statements and proofs).

In Section 8.3, applications are provided to the specific case of reaction diffusion

systems. One basic result used is that in Kishimoto et al. [59] described above, stating

that if the domain Ω is convex in a strongly cooperative reaction diffusion system,

then any nonhomogeneous equilibrium must lie on Eu. One can therefore conclude

that the generic solution (in the sense of prevalence) converges towards a homogeneous

equilibrium in Es.

In Section 8.4, an application is given to a class of chemical reactions which are

strongly monotone, but which may lose their monotonicity properties after using con-

servation laws to reduce the system. The result given shows that the generic solution

(in the sense of prevalence) converges towards a unique equilibrium.

The Appendix of this chapter, Section 8.5, considers the measurability of different

sets appearing in the proof of the main results.

1.8 Monotone Decompositions

Chapter 9 is an in-depth look at a simple algorithm to decompose non-monotone systems

into the negative feedback loop of a controlled monotone system, using a minimal

number of input variables. The algorithm turns out to be NP-hard to compute, which

is a problem in the case of large scale networks, but suitable approximations can be

given via semidefinite programming.

In Section 9.1, the decomposition algorithm from Section 5.3 is reviewed and a sec-

ond algorithm with the same purpose is introduced. Several combinatorial results are

given to provide a more clear picture of the framework. In Section 9.2, the first algo-

rithm is implemented using Matlab and based on an idea by Prof. Bhaskar DasGupta to

relate this problem to the classical MAX-CUT problem from computer science. An im-

plementation is given in Section 9.3 to a 13-variable, 20-edge system from a Drosophila

segment polarity network model. The minimum number of necessary inputs is found,

using an argument that combines both theory and the Matlab implementation results.

A linearly coupled row of networks is also considered, and corresponding extensions are
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given for that case. The second model (Section 9.4 is a large-scale network related to

the EGF receptor, with several hundred variables and nodes. A report is given with

the minimum number of inputs found by the implementation. Finally, two ideas are

considered which may reduce the number of inputs substantially, namely the possibility

of a change of variables and an extension of the implemented algorithm.

1.9 Further Topics

Two topics are addressed in Chapter 10 that have as background motif the theory of

monotone systems.

In the paper [6], Sontag and Angeli find conditions called weak (strong) excitability

and weak (strong) transparency, with the following property: a controlled monotone

system under positive feedback which is weakly excitable and weakly transparent has

strongly monotone closed loop provided that it is also either strongly excitable or

strongly transparent. But this property doesn’t hold for cascades of monotone sys-

tems under the given definitions. Thus, a closed cascade of weakly transparent and

weakly excitable systems may not necessarily be strongly monotone, even if some of

the transparency or excitability conditions are strong. In Section 10.1, the conditions

of partial excitability and partial transparency are defined, which make up for this

deficiency. These definitions also become important for the discussion in Section 6.3.

In Section 10.2, it is pointed out that the stability analysis of a quasimonotone

matrix is substantially simpler to carry out than that of an ordinary matrix, and that

it can be meaningful to study the stability of an arbitrary matrix by comparing it to a

quasimonotone matrix with similar entries. The simple concept of monotone envelopes

is then defined and used for this purpose. Also, several results are provided about

monotone envelopes for their own sake.

1.10 Future Work

The two sections on future work concern possible generalizations of the previous results

for the negative feedback closed loop of monotone controlled systems. The first section
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considers the ‘embedding’ of the n-dimensional closed loop system into a certain 2n-

dimensional monotone system. such an embedding has been considered before by Gouze

[39], by Cosner et al. [18], and more recently by Enciso, Smith and Sontag [29]. It is

discussed how one could potentially conclude the convergence of all solutions of the

closed loop system towards one out of two or more equilibria, by showing this property

for the monotone embedding itself.

On the contrary, showing the existence of periodic solutions for the closed loop sys-

tem seems to require tools away from the domain of monotone systems. In the following

section of that chapter, a background is given as to the plausibility and usefulness of

such a result. A tentative approach is also illustrated via the socalled ejective fix point

theory, which has been succesfully used by Nussbaum, Mallet-Paret and several others

to prove such results in a general one-dimensional delay framework.

1.11 The Appendix

The short monograph in Section 12.1 addresses the following question: given a reaction

diffusion system

u̇ = ∆u+ f(u) (1.6)

under Neumann boundary conditions, and assuming that the n-dimensional reaction

system u̇ = f(u) is globally attractive to an equilibrium, can there be spatially non-

homogeneous equilibria of the original system? Can there be a continuum of such

nonhomogeneous equilibria? The answer to both questions turns out to be yes, and

this is relevant to the material in Chapters 8 and 7: using the Smale argument, such

a function as that built in this section can be extended to a 3-dimensional strongly

monotone system with a continuum of non-homogeneous (and quite possibly exponen-

tially unstable, see Kishimoto [59]) equilibria.

On a different note, Section 12.2 closely follows Chapter 8 of the book [113] by

Volpert, Volpert and Volpert. This text is concerned with chemical reactions under

mass action kinetics, and in particular it considers when these systems are monotone

after reduction using conservation laws. Our section first describes and reviews the
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ideas from that chapter, then offers an extension to invertible reactions. This section

therefore arguably addresses the basic material on monotonicity as applied to chemical

reactions.

Section 12.3 is an appendix to Section 5.1, where the basics of controlled delay

systems are reviewed. In this section, sufficient conditions are provided for a system of

the form (5.4) to have unique maximally defined solutions (Theorem 14 in Chapter 5).

It also provides a proof that the semiflow condition is satisfied for such systems.
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1.12 Publications Associated to this Work

Many portions of this dissertation have been published or submitted for publication.

These publications are all self contained, and the reader is invited to look at them for

discussions that are independent of the rest of the material, and in particular (crucially!)

much shorter.

• The material in Chapter 2 was published in the Journal of Mathematical Biology

[32], as joint work with Eduardo Sontag.

• Chapters 4 and 5 were submitted together as a paper and accepted for publi-

cation in the journal Discrete and Continuous Dynamical Systems [30], jointly

with Eduardo Sontag. A very related work that includes applications to reaction

diffusion systems has been accepted for publication in the Journal of Differential

Equations [29], in joint work with Hal Smith and Eduardo Sontag.

• Chapters 6 and 7 are the result of combining three different papers, the first

two published in Systems and Control Letters [31] and in the proceedings for

the 2004 IEEE conference on Decision and Control. The third paper covers the

remaining material, and it will be submitted presently. All three are coauthored

with Eduardo Sontag.

• The material in Chapter 8 is the subject of a paper that will presently be sub-

mitted to a theoretical journal, coauthored with Hal Smith.

• Chapter 9 will become part of a joint paper that is being prepared for submission

coauthored with Bhaskar DasGupta, Eduardo Sontag, and Yi Zhang.
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1.13 Stability Notation

We close this introductory chapter with some remarks on our notation for the stability

of matrices and linear operators, some of which has already been used above. An n×n

matrix A is said to be Hurwitz or exponentially stable if <(λ) < 0 for every eigenvalue

λ of A. It is said to be exponentially unstable if there exists some eigenvalue λ of A

such that <(λ) > 0. We denote by N the class of matrices A such that <(λ) ≤ 0 for

every eigenvalue λ of A. It is well known in the literature that a system ẋ = Ax is

globally attractive to the origin if A is exponentially stable, and that it is dynamically

unstable if A is exponentially unstable. It is also well known that this system can be

dynamically unstable even when A is in the class N , as exemplified in the case

A =


 0 1

0 0


 .

(The instability is not exponentially fast, hence the name in the other cases.)

In the infinite dimensional case, one must take into account that the spectrum of

a linear operator is divided into the point spectrum, the continuous spectrum and the

residual spectrum, which are pairwise disjoint from each other. For simplicity’s sake we

give the three definitions above in terms of the point spectrum alone. Nevertheless in

Chapter 3 it will be shown that for quasimonotone operators the element of the spectrum

with the largest real part (if it exists) is generally part of the point spectrum. This

would render several alternative definitions of stability equivalent for such operators.

Given a dynamical system, we denote by E the associated set of equilibria. Let

e ∈ E, and let L be the linearization of the system around e in the appropriate context.

We say that e is exponentially stable if L is an exponentially stable operator. We

similarly define when e is exponentially unstable. Finally, we define the set Es to be the

set of equilibria e whose associated linearization L is in the class N .
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Chapter 2

A First Tour: Testosterone Dynamics

2.1 Introduction

In this chapter we give a self-contained introduction to the main ideas that will be

formalized in Chapters 4 and 5. Although the set of differential equations is of interest

in its own right, it is described here in the context of a specific biological application.

No explicit mention is made here of monotone systems – rather, the reader should take

this discussion as a motivation for how monotonicity can be of use.

The concentration of testosterone in the blood of a healthy human male is known

to oscillate periodically with a period of a few hours, in response to similar oscillations

in the concentrations of the luteinising hormone (LH) secreted by the pituitary gland,

and the luteinising hormone releasing hormone (LHRH), normally secreted by the hy-

pothalamus (see [14],[104]). In his influential textbook Mathematical Biology [77], J.D.

Murray presents this process as an example of a biological oscillator, and proposes a

model to describe it (pp. 244-253 in this edition). To obtain periodic oscillations in an

otherwise globally attractive model, he introduces a delay in one of the variables, and

by linearizing around the unique equilibrium point, he presents an argument to find

conditions for the existence of such oscillations. This section in his book has remained

virtually unchanged since the first edition of 1989, up to the recent publication of the

third edition in 2002.

The study of delayed models is one of great interest for its relevance in biological ap-

plications (consider for instance the delay between the moment a protein is transcribed,

and the moment the folded and translated protein gets to act as a transcription factor

back in the nucleus). But the introduction of delays often comes at the expense of a

higher sophistication in mathematical treatment.
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As a “case study” for a method for proving stability in a class of dynamical systems

with delays, we show here that Murray’s model in fact does not exhibit oscillations. The

biological model itself, while simplified, is still interesting in its own right, and belongs

to a commonly recurring class of models of negative feedback proposed (in undelayed

form) by Goodwin [38], and illustrated in Goldbeter [37]. In what follows, we first study

the linearized system around the unique equilibrium, establishing local stability, and

then proceed to show the global stability of the system. We also propose an explanation

for the confusion in [77].

2.2 The Model and its Linearization

The presence of LHRH in the blood is assumed in this simple model to induce the

secretion of LH, which induces testosterone to be secreted in the testes. The testosterone

in turn causes a negative feedback effect on the secretion of LHRH. Denoting LHRH,

LH, and testosterone by R,L, and T respectively, and assuming first order degradation

and a delay τ in the response of the testes to LH, we arrive to the dynamical system

Ṙ = f(T ) − b1R

L̇ = g1R− b2L

Ṫ = g2L(t− τ) − b3T.

(2.1)

Here f(x) = A/(K + x), b1, b2, b3, g1, g2, A,K are positive constants, and τ ≥ 0. Other

positive, monotone decreasing functions could be employed as well, for instance such

as f(x) = A/(K + xn) for n > 1 (see Murray [77], p. 246 and below).

Several comments are at hand. First, one could introduce arbitrary delays in the

first summands of each of the three equations above, since a simple change of variables

would reduce such a system to the form (2.1). Second, this simple feedback system is

of interest independent of its interpretation as that of a testosterone dynamics model.

Third, the terms g1R and g2L(t−τ) could be replaced by monotone increasing functions

g1(R) and g2(L(t− τ)) without undermining the discussion that follows.

By setting the left hand sides equal to zero, it is straightforward to show that there
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are as many equilibrium points of (2.1) as there are solutions of

f(T ) − b1b2b3T

g1g2
= 0, (2.2)

namely for each such solution T0 of (2.2), one has the equilibrium

L0 =
b3T0

g2
, R0 =

b3b2T0

g1g2
, T0. (2.3)

By the assumption of positivity and monotonicity of f there always exists a unique

solution of (2.2), thus a unique equilibrium point of (2.1). Linearizing around that

point we obtain the system

ẋ = f ′(T0)z − b1x

ẏ = g1x− b2y

ż = g2y(· − τ) − b3z.

(2.4)

The characteristic polynomial of (2.4), which determines all solutions of (2.4) of the

form v(t) = v0e
λt, is

(λ+ b1)(λ+ b2)(λ+ b3) + de−λτ = 0, d = −f ′(T0)g1g2 > 0. (2.5)

Proposition 1 The linear system (2.4) is exponentially stable, for all values of b1, b2,

b3, g1, g2, τ and f(x) = A/(K + x).

Proof. For the statement to be false, there must be a solution λ of (2.5) such that

Re λ ≥ 0. Assuming that this is the case, we have

d ≥ | − de−λτ | = |λ+ b1||λ+ b2||λ+ b3| ≥ |b1||b2||b3| = b1b2b3 . (2.6)

But on the other hand, using the choice for f(T ) above, we have f ′(T0) = −A/(K +

T0)2 = −f(T0)/(K + T0), and

d = −f ′(T0)g1g2 =
f(T0)
K + T0

g1g2 = b1b2b3
T0

K + T0
< b1b2b3 , (2.7)

which is a contradiction.
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2.3 Global Asymptotic Stability of the Model

Even with the addition of only one simple delay, it is probably best to view (2.1) as

a dynamical system with states in the space X of continuous functions from [−τ, 0]

into the closed positive quadrant (R+)3. The right hand side of (2.1) defines a function

F : X → (R+)3 in the natural way, and given an initial state φ ∈ X, the solution of the

system is the unique absolutely continuous function x : [−τ,∞) → (R+)3 such that

x(0) = φ and ẋ(t) = F (x(t)), t ≥ 0. (2.8)

Here, x(t), or simply xt, is the state defined by xt(s) = x(t + s), s ∈ [−τ, 0]. The

function Φ(t, φ) = xt will be from now on formally identified with system (2.1). For

proofs of the fact that Φ is well-defined, and more details, the reader is referred to the

next chapter.

Cutting the Loop

We define a function G : X × R+ → (R+)3 in a very similar manner to F : for φ(s) =

(R(s), L(s), T (s)), let

G(φ,w) = (w − b1R(0), g1R(0) − b2L(0), g2L(−τ) − b3T (0)) .

Given a piecewise continuous function u : R+ → R+, called an input 1, we define

Ψ(t, φ, u) = xt, where x : [−τ,∞) → (R+)3 is the unique absolutely continuous function

such that

x(0) = φ and ẋ(t) = G(xt, u(t)), t ≥ 0. (2.9)

In effect, we are thus cutting the feedback loop induced by T upon R, and replacing it

with an arbitrary input u(t). The resulting controlled system has therefore the form

Ṙ = f(u) − b1R

L̇ = g1R− b2L

Ṫ = g2L(t− τ) − b3T.

(2.10)

1The more general control-theoretic definition is more elaborate, and it will be used starting in the
following chapter. See also [6]
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Notation: given x, y ∈ R3, let x ≤ y denote xi ≤ yi, i = 1, 2, 3. For φ, ψ ∈ X, let

φ ≤ ψ denote φ(s) ≤ ψ(s), ∀s ∈ [−τ, 0].

Theorem 1 The dynamical system with input Ψ(t, φ, u) satisfies the following proper-

ties:

1. If the input u(t) converges to w ∈ R+, then Ψ(t, φ, u) converges as t tends to ∞

towards the constant state

k(w) =
(
w

b1
,
g1w

b2b1
,
g1g2w

b1b2b3

)
,

for any initial state φ ∈ X.

2. Let u1, u2 be inputs, and pick any two initial states φ, ψ ∈ X. If u1(t) ≤ u2(t) ∀t

and φ ≤ ψ, then Ψ(t, φ, u1) ≤ Ψ(t, ψ, u2) ∀t.

Proof. Suppose that u(t) converges towards w ∈ R+. Let φ ∈ X be arbitrary. The

dynamics of the component R(t) of the solution x(t) is determined by the equation

Ṙ(t) = u(t) − b1R(t), and so R(t) converges towards w/b1. Applying a very similar

argument to L(t) and T (t) in this order, we obtain the first result.

The proof of the second statement follows by the “Kamke condition” (see [101]): if

w1 ≤ w2, φ ≤ ψ, and φ(0)i = ψ(0)i (that is, the ith components of φ and ψ are equal),

then G(φ,w1)i ≤ G(ψ,w2)i. For instance, if φ = (R1, L1, T1), ψ = (R2, L2, T2), φ ≤ ψ,

and R1(0) = R2(0), then w1 − b1R1(0) ≤ w2 − b1R2(0). This can be checked for L and

T in the same way. The fact that the Kamke condition implies the desired property

follows from the results in [101]; however, in the interest of exposition and since the

proof is so short, we provide it next.

Let x(t) be the solution of (2.9) with input u1 and initial condition φ, and let

Gε = G + (ε, ε, ε), for ε > 0. Let yε(t) be the solution of ẏ(t) = Gε(yt, u2) with initial

condition ψ. Suppose that at some point t1, x(t1) 6≤ yε(t1), and so there exists a

component i (that is, R,L or T ) and t0 such that xt0 ≤ yεt0 , x(t0)i = yε(t0)i and

ẋ(t0)i ≥ ẏε(t0)i. But then

ẋ(t0)i = G(xt0 , u1(t0))i ≤ G(yεt0 , u2(t0))i < Gε(yεt0 , u2(t0))i = ˙ yε(t0)i
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which is a contradiction. We thus conclude that x(t) ≤ yε(t), ∀t ≥ 0. Now, it can be

shown ([45],[101]) that as ε→ 0 yε(t) converges pointwise to y(t), the solution of (2.9)

with input u2 and initial condition ψ, and from here the conclusion follows.

Definition 1 For an arbitrary continuous function x : [−τ,∞) → (R+)3, we say that

z ∈ (R+)3 is a lower hyperbound of x(t) if there is z1, z2, . . . → z and t1 < t2 < t3 . . .→

∞ such that for all t ≥ ti, zi ≤ x(t). If for all t ≥ ti, zi ≥ x(t), we say that z is an

upper hyperbound of x(t).

For instance, z is a lower hyperbound of the trajectory x if it bounds from below x(t)

for every t. Similar definitions are given for inputs u(t). The previous Theorem is the

basis for the following result.

Theorem 2 Let v ∈ R+ be a lower hyperbound of the input u(t), and let φ ∈ X be

arbitrary. Then k(v) is a lower hyperbound of the solution x(t) of the system (2.9). If

v is, instead, an upper hyperbound of u(t), then k(v) is an upper hyperbound of x(t).

Proof. Suppose that v is a lower hyperbound of u(t), the other case being similar, and

let v1, v2, . . .→ v and t1 < t2 < . . .→ ∞ be as above.

For every i ≥ 1, let Vi ⊂ (R+)3 be a neighborhood of k(vi) that is open in (R+)3,

and let yi ∈ (R+)3 be such that yi ≤ Vi componentwise. Without loss of generality we

will assume that |yi − k(vi)| ≤ 1/i. Also, let

ui(t) =





u(t), 0 ≤ t < tn

vn, t ≥ tn .

Let T1 < T2 < . . .∞ be defined by induction as follows: T1 = 0, and if Ti−1 is defined,

let Ti be chosen such that Ti ≥ Ti−1 + 1, Ti ≥ ti, and for all t ≥ Ti : xi(t) = Ψ(t, φ, ui)

is contained in Vi. By the previous theorem, xi(t) ≤ x(t)∀t, and so yi ≤ x(t), ∀t ≥ Ti.

As yi → k(v), the conclusion follows.

The following simple Lemma is standard in the literature on discrete iterations (and

is used in a similar context in [4]); we provide a proof for expository purposes.
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Lemma 1 Let S : R+ → R+ be a continuous, nonincreasing function. Then the

discrete system un+1 = S(un) has a unique, globally attractive equilibrium if and only

if the equation S(S(x)) = x has a unique solution.

Proof. If the system has a unique, globally attractive equilibrium ū, then this point is a

solution of the equation S2(x) = S(S(x)) = x. Any other point u cannot be a solution

of this equation, as Sn(u) must converge to ū. This proves the ‘only if’ part of the

lemma.

Conversely, suppose that the equation S2(x) = x has a unique solution. Let u ∈ R+

be arbitrary, and consider the sequence un = Sn(u). If u ≤ u2, then since S2 is a

nondecreasing function, we have u2 ≤ u4, and so

u ≤ u2 ≤ u4 ≤ u6 ≤ . . . .

But the sequence u2, u4 . . . is bounded (by S(0)), and so u2n must converge to some

point v0. The same argument applies if u2 < u, and also for the sequence u1, u3, u5, . . .,

which must converge to some point v1. But the continuity of S implies that both v0

and v1 are solutions of S2(x) = x, so v0 = v1 are both equal to our unique solution,

and un thus converges to this point, independent of the choice of u.

Consider for instance S(x) = p/(q + x), where p, q are positive real numbers. If x

satisfies S2(x) = x, then it holds that

x =
p

q + S(x)
,

which can be rearranged as x2 + qx− p = 0. Using the quadratic formula, it becomes

clear that there is always exactly one positive solution.

This example will be useful in what follows.

Theorem 3 All solutions of the system (2.8), with f = A/(K + x), converge towards

the unique equilibrium, for any choice of the parameters b1, b2, b3, g1, g2, τ, A,K.

Proof. Consider any initial condition φ ∈ X, and the corresponding solution x(t) =

(R(t), L(t), T (t)) of (2.8). Defining the input u(t) = f(T (t)), and using it to solve the
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system (2.9) with initial condition φ, we arrive of course at exactly the same solution

x(t).

Let v bound u(t) from below for all t – for instance, v = 0 will do. Then by

Theorem 2, k(v) is a lower hyperbound of x(t). In particular,

Qv =
g1g2
b1b2b3

v

is a lower hyperbound of T (t). But, since f is a nonincreasing function, this implies

that f(Qv) is an upper hyperbound of f(T (t)) = u(t). Defining v1 = f(Qv), we

apply the same theorem once again to show that k(v1) is an upper hyperbound of x(t),

v2 = f(Qv1) is a lower hyperbound of u(t), etc. But

f(Qx) =
A

K +Qx
=

p

q + x
= S(x)

for p = A/Q, q = K/Q. Thus we see that vn = Sn(v) is a convergent sequence

of numbers that are alternating upper and lower hyperbounds of u(t). This easily

implies that u(t) itself converges to the unique solution ū of the equation S2(x) = x.

By Theorem 1, x(t) converges towards k(ū), independently of the choice of the initial

condition φ.

Finally, this implies that k(ū) is the unique equilibrium of the system, otherwise one

could reach a contradiction by taking this equilibrium as constant initial condition.

2.3.1 Discussion

Several remarks are in order: first, the actual value of the delay τ was never used, and

indeed can be arbitrarily large or small. In fact, we can introduce different delays, large

or small, in all of the first terms at the right hand sides of (2.1), and the results will

apply with almost no variation. If delays are introduced in the second terms, the system

will not be monotone, that is, won’t satisfy the second property of Theorem 1, which

is essential for this argument. But then again, introducing a delay in the degradation

terms wouldn’t be very biologically meaningful.

As for the conclusions in pp. 244-253 of Mathematical Biology, we may venture to

suggest that in eq 7.49, p. 247, Murray writes the characteristic equation (2.5) of the
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linearized system (2.4) as

λ3 + aλ2 + bλ+ c+ de−λτ = 0, (2.11)

where a, b, c, d are all written in terms of the original parameters of the system: a =

b1 + b2 + b3, etc. From here on the efforts are concentrated in finding a root λ of

this equation with Re λ = 0, for some well-chosen coefficients a, b, c, d. But the author

seems to disregard in the remaining argument the fact that a, b, c, d cannot be chosen

arbitrarily and independently, but rather that their values are determined from choosing

arbitrarily b1, b2, b3, g1, g2, τ . Thus for instance, it is assumed in the last line of p.251

that d > c, without justification from the original variables. It turns out that the former

assumption cannot be satisfied for the particular choice of f , as seen in the proof of

Proposition 1.

We point out that a simple modification can make oscillatory behavior possible. In p.

246 of [77], the author discusses varying cooperativity coefficients of f(x) = A/(K+xm),

then settles for m = 1 for the delayed model. If indeed m is increased, then it is very

possible to have d > c and the remaining argument in the section will be valid. One

example of this is when parameters are picked as follows:

m = 2, A = 10, K = 2, b1 = 1, b2 = 1, b3 = 1, g1 = 10, g2 = 10.

Another interesting contribution to the modeling of testosterone dynamics is the

paper [91] by Ruan et al., where sufficient conditions are found for globally attractive

and oscillatory behavior in a neighborhood of an equilibrium. We would like to describe

the relationship between [91] and our own result, given the similarity of the hypotheses

and the potentially conflicting conclusions: global stability in our results vs. Hopf bifur-

cations in [91]. Moreover, we will simplify the statement of that result. In that paper,

several new quantities are introduced in order to state the main result, Theorem 3.1.

In terms of the original variables of the system (b1, b2, b3, etc.), these are as follows:

p = b21 + b22 + b23 ≥ 0

q = b21b
2
2 + b22b

2
3 + b21b

2
3 ≥ 0

∆ = p2 − 3q =
1
2
((b21 − b22)

2 + (b22 − b23)
2 + (b21 − b23)

2) ≥ 0
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z1 =
1
3
(−p+

√
∆).

Theorem 3.1 holds under the assumption that

(b1 + b2)(b1 + b3)(b3 + b2) < d (2.12)

and deals essentially with the following three special cases:

1. b1b2b3 ≥ d and ∆ < 0,

2. b1b2b3 ≥ d and z1 > 0,

3. b1b2b3 < d.

In case 1, (local) asymptotic stability is guaranteed for arbitrary delay lengths (part (i)

of the Theorem), while in cases 2 and 3, and under some additional conditions (parts (ii)

and (iii) of the Theorem), stability holds for small enough delays, but a Hopf bifurcation

occurs at some critical value of this delay length. In light of the above computation,

case 1 can never be satisfied (for variables p, q, r generated from the original set of

parameters b1, b2, b3, etc.). Similarly, the condition z1 > 0 will never be satisfied since

z1 > 0 ⇔ ∆ > p2 ⇔ 3q < 0,

so case 2 cannot hold either. One is only left with case 3, which is actually a consequence

of (2.12). On the other hand, for the particular choice of f(x) made in [77] and the

present discussion, Proposition 1 shows that we always have b1b2b3 > d. Thus Theorem

3.1 does not apply for the present model, as well as for any choice of the function f

and any set of parameters such that b1b2b3 > d.
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Chapter 3

An Overview of Monotone Systems

3.1 Cones and Monotonicity

Let B be a real Banach space, and let K ⊆ B be a cone, that is, a nonempty, convex set

that is closed under multiplication by a positive scalar and pointed (i.e. K ∩ (−K) =

{0}). Assume also that K is closed and has nonempty interior. The cone K induces the

following order relations in B:

x ≤ y ⇔ y − x ∈ K,

x < y ⇔ x ≤ y and x 6= y,

x� y ⇔ y − x ∈ int K.

The pair (B,K) is referred to as an ordered Banach space. The following notation will

be used: [x, y] = {z|x ≤ z ≤ y}, (x, y) = {z|x � z � y}. These sets will be denoted

as intervals or boxes. The cone K is called normal if 0 ≤ x ≤ y implies |x| ≤M |y| for

some constant M > 0, called a normality constant for K. Also, a set A ⊂ B will be said

to be bounded from above if there is some x ∈ B such that a ≤ x, for all a ∈ A. If B1,B2

are two ordered Banach spaces, γ : B1 → B2 is said to be ≤-increasing if x ≤ y implies

γ(x) ≤ γ(y), and it is said to be ≤-decreasing if x ≤ y implies γ(x) ≥ γ(y) (similarly

with the other order relations). In the case B = Rn, consider a tuple (s1, . . . sn), where

si = 1 or −1 for every i. This tuple defines the order x ≤s y if and only if sixi ≤ siyi for

every i. The cones Ks = {x ∈ Rn |x ≥s 0} are denoted as orthant cones. The canonic

orthant cone defined by s = (1 . . . 1) is called the cooperative cone.

For convenience of the reader, we review the following standard facts from convex

analysis.
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Lemma 2 A cone K has nonempty interior if and only if the unit ball is bounded from

above.

Proof. Let K have nonempty interior, that is 0 ≤ Bε(x0) for some x0 > 0 and some real

ε > 0. Then 0 ≤ B1(ε−1x0), which is equivalent by definition to B1(0) ≤ ε−1x0. The

converse result follows by the same argument.

Lemma 3 Let K ⊆ Rn. Then K is normal.

Proof. Let C1 := {x ∈ K| |x| = 1}. Let f : C1 × C1 → R, f(x, y) := x · y. C1 is

compact, therefore f must have a minimum at some (x0, y0). But f(x0, y0) > −1, since

otherwise x0 = −y0 and a contradiction would follow from K ∩ (−K) = {0}. If follows

that there is θ < 1 such that x · y ≥ −θ |x| |y|, for every x, y ≥ 0.

Now let 0 ≤ x ≤ y. Then (y − x) · x ≥ −θ |x| |y − x|, so

|x|2 ≤ θ |x| |y − x| + x · y ≤ |x| (θ |x| + θ |y| + |y|),

and after canceling |x| on both sides (if x = 0 there is nothing to prove) and solving for

|x|, one has

|x| ≤ θ + 1
θ − 1

|y| .

Let B be a Banach space, and let A be a linear operator on B. Let the linear system

ẋ = Ax (3.1)

have well defined solutions (see Section 3.3 for more precise terminology in the infinite

dimensional case). In the following definition we will avoid the use of the abstract term

‘positive’ given in Berman and Plemmons [10] (which has ambiguous associations), but

otherwise we will use the terminology from the literature.

Definition 2 Let K ⊆ B be a cone. With respect to K, a linear operator A : B → B is

said to be:

i) monotone, if AK ⊆ K.
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ii) quasimonotone if the system ẋ = Ax has monotone evolution operators.

iii) strongly monotone if A(K − {0}) ⊆ int K.

iv) strongly quasimonotone if the system ẋ = Ax has strongly monotone evolution

operators (after positive time).

In the case that the choice of the underlying cone K is not clear from the context,

one can use the more explicit terms K-monotone and so on. The following equivalence is

very useful throughout this dissertation in order to have an intuition for these different

definitions. In the context of finite dimensional spaces, we associate to any matrix A a

digraph G, where 1, . . . n are nodes, and (i, j) is an arc iff aji 6= 0 — see also Section 3.4.

We say that a matrix is irreducible if its associated digraph G is strongly connected.

See Figure 3.1 for a compact description of this information.

Lemma 4 Let B = Rn, and let A be an n× n matrix. With respect to the cooperative

cone K = (R+)n,

i) A is monotone iff it has only nonnegative entries.

ii) A is quasimonotone iff it has only nonnegative entries except possibly on the diag-

onal.

iii) A is strongly monotone iff it has only positive entries.

iv) A is strongly quasimonotone iff it is quasimonotone and irreducible.

Proof. The first statement is obvious: if all the entries of A are nonnegative, then Ax ≥ 0

for x ≥ 0. But if aij < 0, then Aej 6≥ 0. The second statement is proven for instance in

[21]. The third statement is proven similarly as the first; the fourth is proven in [101],

Section 4.1.

Definition 3 We say that a linear system ẋ = Ax is monotone if x0 ≤ y0 implies

x(t, x0) ≤ x(t, y0) for all t ≥ 0. Similarly, a system ẋ = Ax will be called strongly

monotone if x0 < y0 implies x(t, x0) � x(t, y0) for all t > 0.
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Degrees of Monotonicity Degrees of Quasimonotonicity
monotone aij ≥ 0 ∀i, j quasimonotone aij ≥ 0 ∀i 6= j

mon. irreducible aij ≥ 0 ∀i, j + Irr. — —
strongly monotone aij > 0 ∀i, j strongly q.m. aij ≥ 0 ∀i 6= j + Irr.

Figure 3.1: The left two columns represent the different types of monotone matrices (1st
column) and their equivalent definition in the cooperative case (2nd column). The 3rd
and 4th columns describe their quasimonotone counterparts. The abbreviation Irr., for
irreducible, simply states that the signed digraph associated to the matrix is strongly
connected. The second row in the quasimonotone matrix columns is empty: if a matrix
A is such that the time evolution operators of ẋ = Ax are monotone irreducible for
t > 0, then these operators are automatically strongly monotone.

Thus a linear system is monotone if and only if its associated operator is quasimonotone,

and it is strongly monotone if and only if its associated operator is strongly quasimonotone.

3.2 The Volkmann Condition

Consider a finite dimensional system

ẋ = f(x). (3.2)

A useful condition to verify that this system is monotone with respect to a cone K

is the so called Volkmann or Vidyasagar condition, introduced in the reference [112]

(and [98] in the linear case). Given a cone K in an abstract Banach space B, let K∗

consist of all linear functionals σ : B → R such that σ(v) ≥ 0, for all v ∈ K. System

(3.2) (or the function f) is said to satisfy the Volkmann condition if for every x ≤ y

and σ ∈ K∗, it holds that

σ(x) = σ(y) ⇒ σ(f(x)) ≤ σ(f(y)).

In the cooperative case, this condition can be easily seen to be equivalent to the so

called Kamke condition

∂fi
∂xj

≥ 0, for all i 6= j.

Lemma 5 Let K be a closed cone with nonempty interior, and let f, g ∈ C1(Rn,Rn)

be such that f ≤ g and at least one of the functions f and g satisfy the Volkmann
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condition. Then for any pair of solutions x(t), y(t) of ẋ = f(x), ẋ = g(x) respectively,

such that x(0) ≤ y(0), it holds that x(t) ≤ y(t) for every t.

Proof. Let p� 0, and fix ε > 0. Define gε(w) := g(w) + εp and let yε(t) be the solution

of ẋ = gε(x) with initial condition y(0). We show the statement for the functions

x(t), yε(t). Once this is shown, one can let ε tend to zero, and the result follows by the

continuity of the solutions.

Define z(t) := yε(t)−x(t). Clearly z(t) is a differentiable function such that z(0) ≥ 0.

We show that for every t ≥ 0 and every σ ∈ K∗ such that z(t) ≥ 0, σ(z(t)) = 0, it holds

σ(ż(t)) = σ(gε(y(t))) − σ(f(x(t))) > 0, whence the statement follows. Assume by con-

tradiction that there exists some fixed t0 and σ ∈ K∗ such that x0 ≤ y0, σ(x0) = σ(y0)

and σ(f(x0)) ≥ σ(gε(y0)), x0 := x(t0), y0 := yε(t0). Using the Volkmann condition for

f , it follows that

σ(f(x0)) ≤ σ(f(y0)) ≤ σ(g(y0)) < σ(gε(y0)),

which is a contradiction. In case that g satisfies the Volkmann condition instead of f ,

a similar argument is used.

Lemma 6 Let K be a closed cone with nonempty interior, and let f : Rn → Rn be C1.

Then system (3.2) is monotone with respect to K if and only if it satisfies the Volkmann

condition.

Proof. The proof of one of the two directions follows directly from the previous lemma.

To prove the other direction, let x0 ≤ y0 and σ ∈ K∗ such that σ(x0) = σ(y0). Define

x(t), y(t) as the solutions of (3.2) with initial conditions x0, y0 respectively, and r(t) :=

σ(x(t)), s(t) := σ(y(t)). By monotonicity x(t) ≤ y(t) for every t, hence r(t) ≤ s(t),

t ≥ 0. Since also r(0) = s(0), it follows r′(0) ≤ s′(0). Noting that r′(t) = σ(f(x(t))),

s′(t) = σ(f(y(t))), the Volkmann condition follows.

Corollary 1 Let f : Rn → Rn be C1. Then system (3.2) is cooperative if and only if

it satisfies the Kamke condition.
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3.3 The Perron-Frobenius and Krein-Rutman Theorems

Perhaps the most important result one should know for any application of monotone

operators is the Perron-Frobenius theorem for finite dimensional systems or Krein-

Rutman theorem (for abstract Banach spaces). These theorems give information about

the spectrum and the eigenvectors of a monotone operator. There are several possible

ways in which these theorems are stated, depending on which properties of monotone

operators want to be stressed by each author and on which ones are left out for the

sake of clarity. For the Perron-Frobenius Theorem, see for instance Theorem 4.3.1 [101]

and Theorems 1.3.2, 1.3.23, 1.3.26 of [10]. For the Krein-Rutman theorem see Theo-

rem 2.4.1 [101], Theorems 19.2 and 19.3 of [25], Exercise (I-9) of Chapter 7 in [41], or

the original 1950 paper [62] (in Russian). All of these theorems have in common a cer-

tain core statement for general monotone operators, together with stronger conclusions

for operators satisfying stronger monotonicity properties.

For cones that are not cooperative (or orthant, see below), there are several equiv-

alent ways to define the concept of irreducibility. We will say here that a monotone

operator is irreducible if for any number α > 0 and vector x > 0, Ax ≤ αx implies

x � 0. Theorem 1.3.20 in [10] shows that this definition generalizes the one given

above for the cooperative case, and that any strongly monotone operator is monotone

irreducible.

Theorem 4 (Perron-Frobenius) Let K ⊆ Rn be a closed cone with nonempty inte-

rior, and let AK ⊆ K. Then ρ(A) is an eigenvalue of A, and there exists a positive

eigenvector (i.e. v > 0) associated to ρ(A).

If A is monotone and irreducible, then v � 0. Also in this case, if u > 0 is an

eigenvalue of A associated to any eigenvector, then u = αv for some real α > 0.

If A is a strongly monotone matrix, then all conclusions above hold, and |λ| < ρ(A)

for any eigenvalue λ 6= ρ(A) of A.

Proof. See the references in Berman and Plemmons [10] above for a discussion.

One may wonder how this theorem can be used in the case of a monotone system



36

ẋ = Ax, since the underlying matrix A is only quasimonotone. Through the use of the

spectral mapping theorem we obtain a completely equivalent result, which we call the

Perron-Frobenius theorem for quasimonotone matrices. The concept corresponding to

ρ(A) is that of the leading eigenvalue of A, that is,

leig(A) = sup{Re λ |λ ∈ σ(A)}.

Theorem 5 (Perron-Frobenius for quasimonotone matrices) Let K ⊆ Rn be a

closed cone with nonempty interior, and let A be quasimonotone with respect to K.

Then leig(A) is an eigenvalue of A, and there exists a positive eigenvector (i.e. v > 0)

associated to ρ(A).

If A is strongly quasimonotone, then v � 0. Also in this case, if u > 0 is an

eigenvalue of A associated to any eigenvector, then u = αv for some real α > 0.

Furthermore, Re λ < leig(A) for any λ 6= leig(A) eigenvalue of A.

Proof. Let A be quasimonotone, and consider the time t evolution operator T (t) of the

system ẋ = Ax. It is well known that T (t) = etA in operator notation. By the spectral

mapping theorem, it holds that σ(T (t)) = exp(tσ(A)). Now, T (t) is monotone with

respect to K by hypothesis, and therefore we can apply the Perron-Frobenius theorem.

Since ρ(T (t)) ∈ σ(T (t)), there exists a real λ ∈ σ(A) such that etλ = ρ(T (t)). We may

require for this that t > 0 be small enough that no eigenvalue of A has imaginary part

2πm, for any nonzero integer m. Since ρ(T (t)) has maximal radius in σ(T (t)), then λ

has maximal real part in σ(A). Therefore λ = leig(A).

For the remaining part of the first statement, recall that if v is an eigenvector of A

with eigenvalue µ then v is an eigenvector of T (t) with eigenvalue etµ (by expanding

the exponential function as a Mc Laurin series). But this is not necessarily true in the

opposite direction. We note instead that σ(T (t)) = {1} if t = 0 and that there exists

t > 0 small enough that σ(T (t)) is contained in a ball around 1 with radius 1/2. Then

we can define the operator S = ln(T (t))/t, which is well defined since z → (ln z)/t

is holomorphic in a neighborhood of σ(T (t)). Thus the eigenvalue ln(ρ(T (t)))/t of

S has an eigenvector v > 0. But it is easy to see that in fact S = A, and also

ln(ρ(T (t)))/t = leig(A). This completes the first part of the proof.
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Let now A be strongly quasimonotone. The fact that there is an eigenvector v � 0 of

A with eigenvalue leig(A) is proved similarly as above. Furthermore, after carrying out

the same construction, let u > 0 be an eigenvector of A. Then u is also an eigenvector

of T (t), and by the Perron-Frobenius theorem, Tu = ρ(T (t))u and u = αv. The last

statement follows also from the spectral mapping theorem and the last statement in

Theorem 4.

A very elegant extension of the Perron-Frobenius theorem for abstract compact

operators is the Krein-Rutman theorem, which we state now.

Theorem 6 (Krein-Rutman Theorem) Let B be a Banach space, and let K be a

closed cone with nonempty interior. If A ∈ L(B,B) is a compact monotone operator,

and if ρ(A) > 0, then ρ(A) is an eigenvalue of A, and there exists a positive eigenvector

v > 0 associated to ρ(A).

If A ∈ L(B,B) is a compact, strongly monotone operator, then ρ(A) ∈ σ(A) with

an eigenvector v � 0. In this case, if u > 0 is an eigenvalue of A associated to any

eigenvector, then u = αv for some real α > 0.

Proof. See the references given above to Deimling [25] for a discussion.

Notes:

For the first statement it may be assumed that K is merely closed and total, that is

K −K = B. Note that the conclusions of the second statement correspond to the

case ”A is monotone and irreducible” in the Perron-Frobenius theorem, and therefore

assumes a stronger hypothesis than the latter theorem. This may be simply a matter

of usage – see for instance the statement of the reference given in [41].

In the same way as for the finite dimensional case, the spectral mapping theorem

can be of use to prove a Krein-Rutman theorem for quasimonotone operators. Such

a result appears in the literature for particular cases, for instance in Section 7.6 of

[101] in the case of strongly monotone reaction diffusion equations. The statement

is very similar to that of Theorem 5, but its proof is substantially more subtle. For
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instance, in the abstract case the spectral mapping theorem requires us to consider the

point spectrum, continuous spectrum and residual spectrum of an operator separately.

Also, the proof of the more general result holds through for systems that are eventually

monotone (eventually strongly monotone), that is, when the time evolution operators

T (t) are monotone (strongly monotone) only for t ≥ t0. This is especially useful in the

case of delay systems. For the argument that follows the most important reference used

is Pazy [87].

Consider a Banach space X, as well as linear operator L : X → X which defines an

abstract dynamical system

ẋ = Lx. (3.3)

That is, (3.3) generates a C0 semigroup of bounded operators T (t) : X → X, t > 0. It

is important that we do not assume that L itself is bounded, or even that it is defined in

all of X, since this is not the case for applications such as in delay or reaction diffusion

systems.

Theorem 7 (Krein-Rutman theorem for quasimonotone operators) Let B be

a Banach space, K a closed cone with nonempty interior, and (3.3) generate a C0

semigroup of compact time evolution operators T (t), t > 0.

If (3.3) is a monotone system and σ(L) 6= ∅, then leig(L) ∈ σ(L), and leig(L) has

an associated eigenvector v > 0.

If (3.3) is a strongly monotone system, then leig(L) has an associated eigenvector

v � 0. Furthermore, any positive eigenvector u > 0 of L is a multiple of v, and

Re λ < leig(L), for every λ 6= leig(L) eigenvalue of L.

Proof. Let L generate a monotone semigroup. We first show that leig(L) ∈ σp(L). Let

t > 0, and note that by Theorem 2.2.3 of [87] exp(tσ(L)) ⊆ σ(T (t)). Since σ(L) 6= ∅,

it follows that ρ(T (t)) > 0. We can therefore apply the Krein-Rutman theorem to the

compact monotone operator T (t) to find that ρ(T (t)) ∈ σp(T (t)) ⊆ σ(T (t)). Now, by

another result in Section 2.2 of [87],

etσp(L) ⊆ σp(T (t)) ⊆ etσp(L) ∪ {0},
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and thus ρ(T (t)) ∈ exp(tσp(L)). This inequality also means, by compactness of T , that

σp(A) is enumerable and that

leigp(L) := sup{Re λ |λ ∈ σp(L)} <∞.

It is also clear that ρ(T ) = exp(tleigp(L)). The fact that ρ(T (t)) ∈ exp(t σp(L)) doesn’t

quite imply yet that leigp(L) ∈ σp(L), but rather that there exists m = m(t) such that

leigp(L) + 2πim/t ∈ σp(L).

Suppose by contradiction that m(t) 6= 0 for every t > 0. Then there would be an

uncountable number of eigenvalues in the point spectrum of L which have real part equal

to leigp(L). This would contradict the enumerability of σp(L) shown above; therefore

leigp(L) ∈ σp(L) after all.

Finally, by Theorem 2.2.5 of [87] and the discussion above, there cannot be any

eigenvalues in the residual spectrum of L with real part larger than leigp(L). The same

applies to the continuous spectrum of L, by Theorem 2.2.6 of [87]. We conclude that

leigp(L) = leig(L), and thus finish the proof that leig(L) ∈ σ(L).

From the above argument, it holds that L−µI is Hurwitz, for some µ large enough.

The equalities

−I =
∫ ∞

0

d
dt
e−µtT (t) dt = (L− µI)

∫ ∞

0
e−µtT (t) dt = (L− µI)C,

show that C = −(L − µI)−1 is monotone. From Pazy [87], Theorem 2.3.3, it follows

that C is a compact operator. Note also that since σ(L−µI) = σ(L)−µ is a nonempty

set contained in the left side of the complex plane, it holds ρ(L−µI) > 0 and ρ(C) > 0.

This is used to obtain, by the Krein-Rutman theorem, an eigenvector of C v > 0

associated to ρ(C), and therefore to obtain an eigenvalue λ0 = −1/ρ(C) of L−µI with

eigenvector v. Note that λ0 is the largest negative real eigenvalue of L − µI. On the

other hand, L − µI is Hurwitz, and it therefore has no nonnegative real eigenvalues.

It follows that λ0 is the largest real eigenvalue of L − µI, that is, λ0 = leig(L − µI).

Therefore v > 0 is an eigenvector of L with eigenvalue λ0 + µ = leig(L), and we thus

finish the first part of the theorem.
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To prove the second part, let it be assumed that the system (3.11) is strongly

monotone. Then the operator C constructed above is strongly monotone as well, and

therefore we can assume v � 0 by the Krein-Rutman theorem. If u > 0 is an eigen-

vector of L with eigenvalue λ, then u is an eigenvector of T (t) with eigenvalue etλ

by the spectral mapping theorem. Therefore u = αv by the Krein-Rutman theorem.

The fact that Re λ < leig(L), for every λ ∈ σ(L), λ 6= leig(L), follows directly from

Theorems 2.2.4, 2.2.5 and 2.2.6 of [87]. .

A very thorough reference on the behavior of abstract positive semigroups is [8].

The result above can therefore be seen as a short compendium of the results in this

reference (although it was developed independently).

The Krein-Rutman Theorem has been studied and generalized in many different

directions over time, for instance by providing more information about the setup given

above for C0 semigroups (e.g. [80]). Another possible direction is to consider a normal

and reproducing cone and a bounded positive operator (not necessarily compact), and

to conclude that the spectral radius is in the (not necessarily point) spectrum of the

operator [12, 96, 42, 81]. Finally, note that by dividing the linear operator A by its

spectral radius, one can see the main conclusion of Theorem 6 as guaranteeing that

there exists a positive, nonzero fixed point of A. This observation allows to study

generalizations of this theorem for nonlinear operators [79, 82]. See also [46, 83, 96, 97,

101].

3.4 Orthant Monotone Systems

Consider a finite-dimensional nonlinear system (3.2). As it was mentioned above, one

way to define partial orders in Rn is as follows. Given a tuple s = (s1, . . . sn), with

si = 1 or −1 for every i, we say that x ≤s y if sixi ≤ siyi for every i. We call ≤s

the orthant order generated by s. The following characterization of monotonicity for

orthant monotone systems is a direct consequence of the arguments in Lemma 6 and

Corollary 1 (or see Corollary III.3 in [6] for a direct proof).

Lemma 7 Consider an orthant order ≤s generated by s = (s1, . . . , sn). A system
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ẋ = f(x) defined on Rn is monotone with respect to ≤s if and only if

sisj
∂fj
∂xi

≥ 0, i, j = 1 . . . n, i 6= j. (3.4)

Another characterization of monotonicity with respect to orthant orders is given by

looking at the signed graph associated to (3.2) in the natural way: given nodes i, j,

draw an arc signed ‘+’ (or +1) from i to j if ∂fj/∂xi ≥ 0 and ∂fj/∂xi 6≡ 0. Similarly

for ‘−’ (or −1), and finally assign no arc if ∂fj/∂xi ≡ 0. The signed, undirected graph

associated to (3.2) is defined from the directed graph simply by ignoring the directions

of the arcs. Note that this definition generalizes that which is given for linear systems in

Section 3.1. It is important to note that not every dynamical system has an associated

(di)graph; we restrict our attention in this section to systems that satisfy this condition,

and we call such systems sign definite.

Given p, we say that an edge (i, j) is consistent with respect to p if p(i)p(j)sign(i, j) =

1. Then the following analog of Lemma 7 holds.

Lemma 8 Consider a system (3.2) and an orthant cone ≤p. Then (3.2) is monotone

with respect to ≤p if and only if every edge is consistent with respect to p.

Proof. Note that p(i)p(j)∂fi/∂xj = 0 if (i, j) 6∈ E(G). For (i, j) ∈ E(G), it holds

that p(i)p(j)∂fi/∂xj ≥ 0 if and only if p(i)p(j)sign(i, j) = 1. The result follows from

Lemma 7.

Let the parity of a chain in G be the product of the signs (+1,−1) of its indi-

vidual edges. We will consider in the next result closed undirected chains, that is,

sequences xi1 , . . . , xir such that xi1 = xir , and such that for every λ = 1 . . . r− 1 either

(x1,λ, x1,λ+1) ∈ E(G) or (x1,λ+1, x1,λ) ∈ E(G).

The following lemma is analogous to the fact from vector calculus that there exists

a potential function for a vector field f(x) if and only if all closed path integrals along

f(x) vanish.

Lemma 9 Consider a dynamical system (3.2) with associated directed graph G. Then

(3.2) is monotone with respect to some orthant order if and only if all closed undirected

chains of G have parity 1.
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Proof. Suppose that the system is monotone with respect to ≤p, that is, p(i)p(j)sign(i, j) =

1 for all i, j, i 6= j (by Lemma 8). Let V (G) = A ∪ B, where i ∈ A if p(i) = 1, and

i ∈ B otherwise. Note that by hypothesis sign(i, j) = 1 if xi, xj ∈ A or if xi, xj ∈ B.

Also, sign(i, j) = −1 if xi ∈ A, xj ∈ B or vice versa. Noting that every closed chain in

G must cross an even number of times between A and B, it follows that every closed

chain has parity 1.

Conversely, let all closed chains in G have parity 1. We define a function p as follows:

consider the partition of V (G) induced by letting i ∼ j if there exists an undirected

open chain joining i and j. Pick a representative ik of every equivalence class, and

define p(ik) = 1, k = 1, . . . ,K. Next, given an arbitrary vertex i and the representative

ik of its connected component, define p(i) as the parity (+1 of −1) of any undirected

open chain joining ik with i. To see that this function is well defined, note that any two

chains joining i and j can be put together into a closed chain from ik to itself, which

has parity 1 by hypothesis. Thus the value of p(i) is independent of the choice of the

chain.

Let now i, j be arbitrary different vertices. If ∂Fj/∂xi ≡ 0, then (3.4) is satisfied

for i, j; otherwise there is an edge joining i with j. By construction of the ‘potential’

function p, it holds that if p(i) = p(j) then sign(i, j) = 1, i.e. ∂Fj/∂xi ≥ 0, and so (3.4)

holds as well. If p(i) 6= p(j), then sign(i, j) = −1, i.e. ∂Fj/∂xi ≤ 0. In that case (3.4)

also holds, and the proof is complete.

3.5 Convergence to Equilibria

As it was shown above, monotonicity is related with positive feedback – and positive

feedback is associated in the literature with multiple stable equilibria. We will see in

this section some concrete statements that embody this assertion.

The first result is due to Dancer [19] in its discrete form; the continuous version

given below is a straightforward generalization.

Lemma 10 (Dancer 1998) Let B be a Banach space and K a closed normal cone.

Let X ⊆ B be such that for every compact A ⊆ X, there exists a ∈ X which bounds A



43

from above (below). Consider a monotone dynamical system x(x0, t) defined on X, and

assume that 1) the system has completely continuous evolution operators, and 2) the

system has precompact orbits in X. Then every omega limit set ω(x) is bounded from

above (below) by an equilibrium.

Proof. Let x0 ∈ X, and consider the set ω(x0), which is nonempty by condition 2). Let

u ∈ X be such that ω(x0) ≤ u. Given w ∈ ω(x0) and t > 0, let q ∈ ω(x0) be such

that x(q, t) = w. Such an element can be found, again using condition 2). Since q ≤ u,

it follows by monotonicity that w ≤ x(u, t); since w, t are arbitrary, it must hold that

ω(x0) ≤ ω(u) pointwise.

Now let z ∈ X be such that z ≥ ω(u). By the same procedure as above, we have

ω(u) ≤ ω(z) pointwise. Let

S := {y ∈ X |ω(x0) ≤ y ≤ ω(z)}.

Since ω(u) ⊆ S, it holds that S is nonempty. It also holds that S is convex, closed,

and bounded (the latter from the normality of K) and that S is an invariant subset

of system x(·, t). Thus, for any time t > 0, and letting T (t) be the time-evolution

operator of the system, we have that T (t) is a compact function such that T (t)S ⊆ S.

By the Schauder fixed point theorem, the set Et := {e ∈ S |T (t)(e) = e} is nonempty.

It is easy to see that each set Et is a compact set, by compactness of T (t) and the

boundedness of S, and that

E1 ⊇ E 1
2
⊇ E 1

4
⊇ E 1

8
⊇ . . .

Therefore the intersection of all these sets must be nonempty. But this intersection is

none other than E, the set of equilibria of x(·, t) in S. It follows that there exists e ∈ E

such that ω(x) ≤ e.

Finding an equilibrium that bounds ω(x) from below follows a similar argument.

Corollary 2 Under the hypotheses of the previous lemma, if there exists a unique equi-

librium e, then every solution must converge towards e.
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The second result is by now a classic statement proven by Hirsch [48, 49]. A detailed

proof will be given in Chapter 8 as part of a generic convergence study. We state this

result in finite dimensions for simplicity.

Theorem 8 Let K ⊆ Rn be a closed cone with nonempty interior. If (3.2) is strongly

monotone with respect to K, then almost every bounded solution x(t) of (3.2) is such

that ω(x(t)) ⊆ E.

Recall that periodic solutions are generally associated with negative feedback. The

following result precludes the existence of attractive periodic solutions for monotone

systems. See [48].

Theorem 9 Let K ⊆ Rn be a closed cone with nonempty interior. If (3.2) is monotone

with respect to K, then (3.2) has no attractive periodic solutions.

3.6 Smale’s Argument

The reader has seen in the previous section what strong stability properties hold for

monotone and strongly monotone systems. Theorem 8 in effect precludes the possibility

for chaotic behavior, and Theorem 9 rules out even the more tame attractive periodic

behavior. One is therefore tempted to go further, and make many other possible con-

jectures: given a monotone system, can it be that there aren’t any periodic solutions

at all? (This can be seen to be true for n = 2.) Can one say that in fact all bounded

solutions of a strongly monotone system converge to the equilibrium set?

The following remarkably simple argument puts a stop to both conjectures above,

and in fact it negates just about any nontrivial conjecture of the form “In a strongly

monotone system, all bounded solutions are such that . . . ”. It is due to Smale in

the 1976 paper [99], and it seems to have been dubbed since “Smale’s argument” or

“Smale’s construction”. See also [50]. Even though Smale proved this result originally

in terms of strongly competitive systems, we will provide it in the setup of this chapter.

See also Section 8.3 for a generalization to reaction-diffusion systems.
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Theorem 10 Let Σ = {x ∈ Rn |
∑

i xi = 0}, and let f : Σ → Σ be an arbitrary

compactly supported C1 function. Then there exists a strongly monotone system ẋ =

F (x) defined on Rn, and such that F (x) = f(x) on Σ.

Proof. Let S(x) :=
∑

i xi. Let p : R → [0, 1] be a smooth, compactly supported function

such that p ≡ 1 on a neighborhood of 0. Let Q > 0 be a fixed number to be determined.

Finally, let v := (1/n, . . . , 1/n), and note that S(x − S(x)v) = S(x) − S(x)S(v) = 0.

Using this fact, we can extend the domain of definition of f to all Rn by letting f(x) :=

f(x− S(x)v), x 6∈ Σ. We will still call this function f(x) for simplicity, and it can be

verified that f : Rn → Σ is still a C1 function. Define

Fi(x) = QS(x) + p(S(x))fi(x), i = 1 . . . n,

so that for any j = 1 . . . n,

∂Fi
∂xj

= Q+ p′(S(x))fi(x) + p(S(x))
∂fi
∂xj

.

Note that if F = (F1, . . . Fn), then F = f on Σ. The functions p′(S(x)), p(S(x)) are

supported inside a set of the form {x ∈ Rn | d(x,Σ) < ε}, and fi, ∂fi/∂fj are supported

inside one of the form {x ∈ Rn | d(x,R1) < ε}. Therefore the continuous functions

p′(S(x))fi and p(S(x))∂fi/∂xj are compactly supported, and one can find Q which is

large enough so that ∂Fi/∂xj > 0 for all i, j. The statement follows.

The use of Theorem 10 for building counterexamples is clear. For instance, to show

that there exists a strongly monotone system with periodic solutions simply consider

a function f̂ : Rn−1 → Rn−1 whose associated system ẋ = f̂(x) has periodic solutions.

Then use an isomorphism π : Σ → Rn−1 to define f(x) := π−1f̂(π(x)). The system

ẋ = f(x) has therefore the exact same properties as its n− 1-dimensional counterpart.

The resulting system ẋ = F (x) after applying the theorem is strongly monotone, but

has a periodic solution on Σ by construction.

It is important to observe that, by definition, Σ is a repelling (though invariant) set

of the system. Indeed,

S(F (x)) = S(QS(x) + p(S(x))f(x)) = S(x)S(Q) + p(S(x))S(f(x)) = S(x)nQ.
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The geometrical interpretation of this is that F (x) points away from Σ, for every x 6∈ Σ.

Moreover, in every counterexample using this construction, the set of bounded solutions

itself has measure zero – and in fact is contained in Σ.

One can therefore escape the threat of Smale’s argument by asking “Let the system

have bounded solutions, and let every compact set A ⊆ X be bounded from below and

above by some element in X.” This is exactly what was done in Theorem 10.

3.7 Stability for Delay Systems

In the following two sections we will prove two statements that further illustrate the

strong stability properties implied by monotonicity. Roughly speaking, the stability of

a steady state in a monotone system doesn’t change after adding or eliminating delays

or diffusion terms. More precisely, given an equilibrium ê of a monotone delay system,

or a spatially homogeneous equilibrium ê of a monotone reaction diffusion system, then

sign(leig(ê)) = sign(leig(e)),

where e is the canonical equilibrium associated to ê in the finite dimensional system

associated to the original system. It is important to note that the original system (delay

or reaction diffusion) must be a well defined monotone system in its own right – not

every delay system with an associated monotone undelayed system is itself monotone.

These two sections attempt to form concise, clear presentations of these results, and

they require some familiarity with the subjects at hand - a formal introduction to delay

or reaction diffusion systems is out of the question. Nevertheless, in Section 5.1 a

self-contained overview of delay systems is given at length. The following two sections

are based on the discussions given in the corresponding sections of Smith [101] for the

cooperative case.

Consider a general linear delay system on Rn, that is a system of the form

ẋ = Lxt, x(0) = φ. (3.5)

Here xt(s) = x(t+ s) for s ∈ [−r, 0], φ : [−r, 0] → Rn is a continuous function, and L is

an n× n matrix of real signed Borel measures Lij on [−r, 0] for each i, j = 1 . . . n. The
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formal multiplication by a continuous function xt, (xt)j : [−r, 0] → R for j = 1 . . . n, is

understood in the obvious sense.

Suppose that (3.5) is monotone with respect to a closed coneK ⊆ Rn with nonempty

interior. By this it is meant that the dynamical system in X = C([−r, 0],Rn) induced

by (3.5) is monotone with respect to the cone K̂ = {φ ∈ X|φ(s) ≥ 0, ∀s}. This is

equivalent to the following property: for every state φ ≥ 0 and every σ ∈ K∗, σ(φ(0)) =

0, it holds that σ(Lφ) ≥ 0 (the so-called Volkmann property). see [101], Section 5.1 for

the cooperative case, and [50] for the general case.

The spectrum associated with the operator L in (3.5) satisfies σ(L) = σp(L) and

consists of the complex numbers λ such that

det(λI −A(λ)) = 0, (3.6)

where A(λ)ij := Lije
λt (see [44], Lemma 7.2.1).

Lemma 11 Let (3.5) be monotone with respect to K. Then A(λ) is quasimonotone

with respect to K, for all λ ∈ R.

Proof. The matrices A(λ) are defined in such a way that for x0 ∈ Rn and φ := x0e
λt, t ∈

[−r, 0], it holds that Lφ = Lx0e
λt = A(λ)x0. Let x0 ≥ 0, and let σ ∈ K∗ with σ(x0) = 0.

The Volkmann property for L implies that σ(Lφ) ≥ 0. But this is σ(A(λ)x0) ≥ 0, which

proves the (finite dimensional) Volkmann property for A(λ).

The function λ → leig(A(λ)) is clearly continuous on λ. In the cooperative case

discussion in [101], Section 5.5, λ1 ≤ λ2 implies A(λ1)ij ≥ A(λ2)ij for all i, j, and

therefore leig(A(λ1)) ≥ leig(A(λ2)) This is used in [101] to show that the graph of

leig(A(λ)) intersects the diagonal at exactly one point, and it is critical in the proof of

Corollary 5.5.2. The intersections of this function with the diagonal are important since

they are associated with real eigenvalues in the spectrum of (3.5): λ − leig(A(λ)) = 0

implies that λ ∈ σ(A(λ)) and (3.6) holds.

Lemma 12 Let (3.5) be monotone with respect to K. Then λ → leig(A(λ)) intersects

the diagonal at least at one point. If (3.5) is eventually strongly monotone, then there
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is exactly one intersection.

Proof. Suppose by contradiction that there are no intersections. In the first scenario,

we have λ < leig(A(λ)) for all λ. Now, for λ > 0, the functions eλt, t ∈ [−r, 0] are

bounded between zero and one, and thus every Aij is similarly bounded. This implies

that there is a uniform upper bound for ‖A(λ)‖, λ > 0, which is a contradiction since

leig(A(λ)) ≤ ρ(A(λ)) ≤‖A(λ)‖ .

Suppose then that λ > leig(A(λ)) for all λ. Let λ0 := leig(L) ∈ R. We have that

λ0 ∈ σ(A(λ0)), and so λ0 ≤ leig(A(λ0)) < λ0, another contradiction.

Let now (3.5) be eventually strongly monotone. In the same way as in the proof of

Theorem 7, we can use the spectral theorem to write the spectrum of (3.5) in terms of

the spectrum of the evolution operator T (t) for t large enough, that is

σ(T (t)) = {0} ∪ {eλt |λ eigenvalue of (3.5)}.

This operator can be assumed to be strongly monotone for t large enough, and it can

be shown to be compact. Every real λ such that λ = leig(A(λ)) has, by Theorem 4, an

associated eigenvector v > 0 such that A(λ)v = λv. It is easy to verify that x = veλt

is a solution of (3.5) and therefore generates an eigenvector veλt > 0 of T (t). But by

the Krein-Rutman theorem such eigenvectors are uniquely associated to the eigenvalue

leig(T (t)) = eleig(L). Thus λ = leig(L), and the intersection must be unique.

To system (3.5) we can associate an undelayed system by letting L̂x = L(x̂) and

considering

ẋ = L̂(x). (3.7)

We now conclude that the stability of (3.5) is tied with that of (3.7).

Corollary 3 Let (3.5) be eventually strongly monotone. Then it is exponentially sta-

ble (exponentially unstable) if and only if (3.7) is exponentially stable (exponentially

unstable).

Proof. Let λ0 be the unique real value such that λ0 = leig(A(λ0)). We show that

λ0 < 0 (λ0 > 0) if and only if leig(A(0)) < 0 (leig(A(0)) > 0): if λ0 < 0, then
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necessarily leig(A(0)) < 0, since otherwise by the previous lemma λ < leig(A(λ)) for all

λ > 0, which is a contradiction. All other implications are very similar to prove.

Note that

L̂x = L(x̂) = L(e0tx) = A(0)x,

that is L̂ = A(0), and recall from the previous proof that λ0 is the leading eigenvalue

of L. Since the exponential stability or instability of a system at an equilibrium is

determined by the sign of the leading eigenvalue, the statement follows.

The question remains as to how one can identify a delay monotone system (3.5) as

being eventually strongly monotone. Smith and Thieme [102, 101] propose practical

conditions (I), (R) for the cooperative case, which can also be used for any orthant

cone. In the case of general cones, the reader is referred to Section 4.3 of [50] for a

condition (called (STD)) which is very related to strong monotonicity for a monotone

delay system, and which is a direct generalization of a corresponding condition for the

ODE case (called (ST) in this reference).

Finally, note that the previous corollary can be used on any nonlinear delay system

ẋ = f(xt), (3.8)

by letting f̂(x) := f(x̂) and considering its associated finite dimensional system

ẋ = f̂x. (3.9)

Corollary 4 Let (3.8) be a nonlinear delay system which is eventually strongly monotone

with respect to K, and let φ = ê be an equilibrium of this system. Then ê is exponen-

tially stable (exponentially unstable) in this system if and only if e is exponentially stable

(exponentially unstable) in the system (3.9).

Proof. The proof follows simply by linearizing both systems around their respective

equilibria ê, e.

In particular, if f ′(x̂) is nonsingular, then either exponential stability or exponential

instability must follow, simply by looking at the linearization of the corresponding

undelayed system around the appropriate fixed point.
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3.8 Stability for Reaction Diffusion Equations

Consider a cone K ⊆ Rn, closed and with nonempty interior, and a reaction diffusion

system

ẋ = D∆x+ f(q, x). (3.10)

The state space of this system is the space of continuous functions z : Ω → Rn defined

on a bounded domain Ω ⊆ Rm with smooth boundary, under the supremum norm. D is

an elliptic matrix (the typical case is D = I), the vector ∆x stands for (∆x1, . . .∆xn)t,

f : Ω × Rn → Rn, and suitable boundary conditions are defined (Neumann, Dirichlet,

Robin). See Mora [76] for details on the existence and uniqueness of solutions of such

equations under this framework. We say that system (3.10) is monotone with respect to

K ⊆ Rn if x(q) ≤ y(q) pointwise implies that the solutions x(t, q), y(t, q) of the system

satisfy

x(t, q) ≤ y(t, q), for every q ∈ Ω, t ≥ 0.

This is equivalent to asking that the dynamical system induced in X = C(Ω,Rn) be

monotone with respect to the cone

K̂ := {x ∈ X |x(q) ≥K 0 for every q}.

For a thorough introduction to the subject of monotonicity for cooperative reaction

diffusion systems, see [101].

Now, if D is such that the system ẋ = D∆x is monotone with respect to K̂ (which is

often the case by comparison principles), and if ẋ = f(q, x) is monotone for every q ∈ Ω,

then (3.10) is a monotone system as well (see [101], Chapter 7). It will also be assumed

later on that (3.10) is strongly monotone, for which suitable sufficient conditions (such

as ẋ = f(q0, x) strongly monotone for some q0) can be found.

It can be verified that the linear case for system (3.10) is of the form

ẋ = D∆x+M(q)x, (3.11)

for M(q) an n × n matrix for every q. In the general case, linearizing the system

in the state space around an equilibrium y(q) generates a system as in (3.10) with
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M(q) = ∂f/∂x(q, y(q)). The generator of this system in state space is the unbounded

operator

L : X → X, Lu = D∆x+M(q)x.

The eigenvalues of L are the solutions of the elliptic system

λω = D∆w +M(q)ω

under the given boundary conditions.

Without further delay, the following is the stability result that is the main purpose of

this section. The key to this result is a ‘sandwich’ argument very common in a monotone

setting. This proposition simplifies the argument carried out in Remark 7.6.1 of [101],

and in fact generalizes it to the monotone (as opposed to strongly monotone) case.

Proposition 2 Consider a monotone system (3.10) under the cone K, and let f be

independent of q. Then a constant equilibrium ê of (3.10) is locally attractive (exponen-

tially unstable) if and only if e is a locally attractive (exponentially unstable) equilibrium

of the system ẋ = f(x).

Proof.

Observe that the finite dimensional system

ẋ = f(x) (3.12)

is contained in the system (3.10), in the sense that any solution x(t) of (3.12) is also

a solution x(t, q) ≡ x(t) of (3.10). Thus in particular, if system (3.12) is exponentially

unstable, then there is a solution x(t) that tends exponentially to infinity, and the same

solution shows that (3.10) is exponentially unstable.

Let now the finite dimensional system

ẋ = Mx (3.13)

be locally attractive towards e. Let ε > 0 be such that |y − e| < ε implies that the

solution x(t) of (3.12) starting at y will converge towards e. Since K has nonempty
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interior, there exists p� 0 such that the unit ball in Rn around the origin is bounded

from above by p.

Consider an initial condition x(0, q) of system (3.11) such that

e− ε

2 |p|p ≤ x(0, q) ≤ e− ε

2 |p|p

for every q ∈ Ω. It is easy to see that any x(q, 0) contained in a small enough ball around

e satisfies this condition. By monotonicity, the solution x(t, q) of (3.10) is bounded

from above and below by the solutions at time t of (3.12) starting at x1 = e− ε
2|p|p and

x2 = e+ ε
2|p|p respectively. Since these solutions converge towards e, so does x(q, t) by

normality of K – see the proof of Theorem 11.

We can use the Krein-Rutman theorem for quasimonotone operators in order to

strengthen the statement of Proposition 2 in the linear case.

Corollary 5 Consider a monotone linear system (3.11) with M(q) = M , for all q.

Then leig(M) ≤ leig(L). If the system (3.11) is strongly monotone, then leig(M) =

leig(L).

Proof. Note that any eigenvalue λ of the associated, finite dimensional system (3.13)

with eigenvector y, is also an eigenvalue of (3.11) with the corresponding constant

eigenvector ŷ. In particular, σ(M) ⊆ σ(L) and leig(M) ≤ leig(L).

Let now (3.11) be strongly monotone. (This implies that (3.13) is also strongly

monotone by definition.) By the Perron-Frobenius theorem, there is an eigenvector ω >

0 of M associated to the eigenvalue leig(M). But then ω̂ > 0 is also an eigenfunction of

L, with eigenvalue leig(M). From Theorem 7, the uniqueness of a positive eigenfunction

implies that leig(L) = leig(M).
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Chapter 4

The Small Gain Theorem

4.1 Preliminaries

Controlled Dynamical Systems

Let BX , BU be two arbitrary Banach spaces, and pick Borel measurable subsets X ⊆

BX , U ⊆ BU . The set U is referred to as the set of input values, and an input is defined

as a function u : R+ → U that is Borel measurable and locally bounded. The set of

all inputs taking values in U will be denoted as U∞. The set of all constant inputs

û(t) ≡ u ∈ U is denoted by Û ⊆ U∞, and is considered to have the topology induced

by U .

Definition 4 A controlled dynamical system is a function

Φ : R+ ×X × U∞ → X (4.1)

which satisfies the following hypotheses:

1. Φ is continuous on its first two variables, and the restriction of Φ to the set

R+ ×X × Û is continuous.

2. For every u, v ∈ U∞ such that u(s) = v(s) for almost every s, x(t, x0, u) =

x(t, x0, v) for all x0 ∈ X, t ≥ 0.

3. x(0, x0, u) = x0 for any x0 ∈ X, u ∈ U∞.

4. (Semigroup Property) if Φ(s, x, u) = y and Φ(t, y, v) = z, then by appending u|[0,s]

to the beginning of v to form the input w, it holds that Φ(s+ t, x, w) = z.
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See also Sontag [106]. The functions x(·) = Φ(·, x0, u) can be regarded as trajectories

in time for every x0, u. We often refer to Φ(t, x0, u) as x(t, x0, u) or simply x(t) if

the context is clear. As a simple remark, note that the properties above imply that if

u,w ∈ U∞ and u|[0,s] = w|[0,s], then Φ(s, x, u) = Φ(s, x, w). This can be seen simply by

letting t = 0 in Property 4.

Output and Feedback Functions

Given a controlled dynamical system (4.1), a Banach space BY and a measurable set

Y ⊆ BY , an output function is any continuous function h : X → Y . In that case, the

pair (Φ, h) consisting of

Φ : R+ ×X × U∞ → X, h : X → Y (4.2)

will be referred to as a dynamical system with input and output. Unless explicitly stated,

we will assume throughout this chapter that BY = BU , Y = U , in which case h is also

called a feedback function. It will also be assumed that h is ≤-decreasing, in which case

(4.2) is said to be under negative feedback.

Monotonicity and Characteristic

Given cones KX ⊆ BX , KU ⊆ BU , a controlled dynamical system (4.1) is said to

be monotone with respect to KX ,KU if the following property is satisfied: for any two

inputs u, v ∈ U∞ such that u(t) ≤ v(t) for almost every t, and any two initial conditions

x1 ≤ x2 in X, it holds that

x(t, x1, u) ≤ x(t, x2, v), ∀t ≥ 0.

The partial orders are interpreted here as ≤U or ≤X in the obvious manner. If there

is no input space, i.e. if the system is autonomous, then we recover the definition

of monotonicity from Chapter 3. The cones will usually be omitted if they are clear

from the context. We observe also that if x1 ≤ x2, u1, u2 ∈ U∞ and u1(t) ≤ u2(t)

on [0, s], then x(s, x1, u1) ≤ x(s, x2, u2). To see this, let ūi(t) = ui(t), 0 ≤ t ≤ s, and
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ūi(t) = a otherwise, for fixed a ∈ U . Then ū1 ≤ ū2, and by monotonicity x(s, x1, ū1) ≤

x(s, x2, ū2). The conclusion follows by the remark after Definition 1.

A dynamical system (4.1) is said to have an input to state (I/S) characteristic

kX : U → X if for every constant input û(t) ≡ u ∈ U , x(t, x0, u) converges1 to

kX(u) ∈ X as t → ∞, for every initial condition x0 ∈ X. Given a system with

input and output (4.2) with Y = U , the function k := h ◦ kX will be called the

feedback characteristic of the system. (This function has been called input to output

characteristic in previous work, where U and Y are not necessarily equal.) It can be

easily shown that if (4.1) is monotone then kX is a ≤-increasing function, see Angeli

and Sontag [6]. By invoking Theorem 10, we can prove the following result.

Proposition 3 Let system (4.1) be monotone with respect to cones KX , KX . Suppose

that for every constant input û(t) ≡ u ∈ U , the system x(t, x0, u) has 1) precompact

orbits, 2) completely continuous time-evolution operators, and 3) a unique equilibrium

kX(u). Then the function kX : U → X is an I/S characteristic.

Proof. This result follows immediately by Theorem 10.

Closed Loop Trajectories

Consider a system (4.2) and assume that BY = BU , Y = U . Given a vector x0 ∈ X,

and a continuous function x : R+ → X, it will be said that x(t) is a closed loop trajectory

of (4.2) with initial condition x0 if x(0) = x0 and x(t) = Φ(t, x0, h ◦ x(·)), for all t ≥ 0.

Definition 5 Suppose that (4.2) is such that, for each x0 ∈ X, there is a unique

continuous closed loop trajectory x(t) so that x(0) = x0. The function

Ψ : R+ ×X → X, Ψ(t, x0) := x(t) (4.3)

will be called the closed-loop behavior associated to (Φ, h). If this function itself con-

stitutes a dynamical system, then it is denoted as the closed loop system associated to

(Φ, h).

1This definition differs slightly with that in Angeli and Sontag [6], in that stability of the attractor
kX(u) is not assumed. Nevertheless see the comments after Theorem 11.
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The semiflow condition for Ψ is actually guaranteed by the unique closed loop tra-

jectory assumption. To see this, let x(t) be an absolutely continuous closed loop tra-

jectory, and y0 = x(t0). Then the function w(t) = x(t + t0) can be shown to be itself

an absolutely continuous closed loop trajectory, by using the semiflow condition for Φ.

Therefore w(t) = Ψ(t, y0), and Ψ(s0, y0) = z0 implies x(t0 + s0) = w(s0) = z0. To

prove the continuity of Ψ on its second argument, one may nevertheless need to assume

stronger continuity conditions than are stated in Definition 4. While the main result

will not assume the existence or uniqueness of closed loop trajectories for any x0 ∈ X,

the fact that the closed loop system Ψ is well defined will be guaranteed in all our

applications, since we will start off with an autonomous dynamical system in the first

place (see the introduction).

The General Assumptions

A subset A of an ordered metric space (T,≤) is said to satisfy the ε-box property if for

every ε > 0 and x ∈ A, there are y, z ∈ A such that diam [y, z] < ε and [y, z] ∩ A is a

neighborhood of x (with respect to the relative topology on A). A simple example of a

set that does not satisfy this property is A := {(x, y) ∈ R2 |x+ y ≥ 0}, under the usual

positive orthant order for R2.

Let BX , BU be arbitrary Banach spaces ordered by cones KX ,KU , and let (4.1) be

a controlled dynamical system with states in X ⊆ BX and input values in U ⊆ BU .

Let h : X → U be a given feedback function. The following general hypotheses will be

used throughout this chapter:

H1 KX and KU are closed, normal cones with nonempty interior.

H2 U is closed and convex. Moreover, for every bounded set C ⊆ U , there exist

a, b ∈ U such that a ≤ C ≤ b.

H3 X ⊆ BX and U ⊆ BU satisfy the ε-box property.

H4 Φ(t, x0, u) is monotone, with a completely continuous I/S characteristic kX . Fur-

thermore, h is a ≤-decreasing feedback function that sends bounded sets to

bounded sets.
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Recall that a map T : D ⊆ B1 → B2 is completely continuous if and only if it is

continuous and T (A) is compact, for every bounded set A ⊆ D. Note that H4 implies

that k = h ◦ kX is completely continuous as well.

A notion related to H3 is proposed in Smith [101]: x ∈ X can be approximated

from below if there exists a sequence {xn} in X such that x1 < x2 < x3 < . . . and

xn converges towards x as n tends to infinity. It is easy to see that H3 doesn’t imply

boundedness from below for every x ∈ X, for instance considering X = [0, 1], x = 0

and the usual order. It also holds that approximability from both below and above for

all x ∈ X doesn’t imply the ε-property for X. An example for this is

X = {(x1, x2) ∈ R2| x1x2 < 0} ∪ {x2 = 0}, x = (0, 0),

with the usual positive cone. Note that for orthant cones K = Rs1 × . . . × Rsn (si =

‘+’ or ‘−’), any box (a, b) together with some or all of its faces satisfies condition H3.

So does also any open X in an arbitrary Banach space ordered with a cone K with

intK 6= ∅.

Property H3 can also be compared with the definition in Hirsch [49] of the order

topology in a Banach space B, namely the topology generated by the order intervals

(x − λe, x + λe), where x ∈ B,λ > 0 arbitrary, and e ∈ B, e � 0 is fixed. But under

the hypothesis that the underlying cone KB is normal, it holds that the usual topology

and the order topology are the same. To see this, let x− λe � y � x+ λe. Then by

normality of KB , |y − x+ λe| ≤ M2λ |e|, and so |y − x| ≤ 2Mλ |e| + λ |e|. By making

λ small enough one can fit an order interval inside any open ball in B. The assertion

follows.

In particular, consider BU = Rm, BX = Rn, KU and KX orthant cones. Let U be

a closed box (not necessarily bounded), and let X be either an open set or an interval

(bounded or not) that contains some or all of its sides. Given a monotone system

ẋ = f(x, u), u = h(x) with characteristic, f continuous and locally Lipschitz on x, and h

≤-decreasing and continuous, conditions H1,H2,H3,H4 are necessarily satisfied. Indeed,

the only condition that still needs verification is that kX is (completely) continuous;

this has been done in [6].
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4.2 The Small Gain Theorem

Our first result is referred to as the Converging Input Converging State property, or

CICS for short.

Theorem 11 (CICS) Consider a monotone system Φ(x, t, u) with a continuous I/S

characteristic kX , under hypotheses H1,H3. If u(t) converges to ū ∈ U as t→ ∞, then

x(t, x0, u) converges to x̄ := kX(ū), for any arbitrary initial condition x0.

Proof. Let u(t) → ū. For ε > 0, let δ > 0 be such that |v − ū| < δ ⇒
∣∣kX(v) − x̄

∣∣ < ε.

The assumption H3 can be used on U to construct a “δ-box” around ū, that is, to find

a, b ∈ U such that diam[a, b] < δ and [a, b] ∩U is a neighborhood of ū. In particular, it

holds that
∣∣kX(v) − x̄

∣∣ < ε for every v ∈ [a, b] ∩ U , and that
∣∣kX(a) − kX(b)

∣∣ ≤ 2ε.

Let now T1 be such that u(t) ∈ [a, b] for all t ≥ T1, and let x1 := x(T1, x0, u(t)).

Now the attention can be restricted to the input u1(t) := u(t + T1) with the initial

condition x1. This trajectory has the same limit behavior as before but with the added

advantage that now all input values correspond to globally attractive equilibria that

are close to x̄.

Let T2 be large enough so that
∣∣x(t, x1, a) − kX(a)

∣∣ < ε and
∣∣φ(t, x1, b) − kX(b)

∣∣ < ε,

for all t ≥ T2. Since by monotonicity

x(t, x1, a) ≤ x(t, x1, u1) ≤ x(t, x1, b), ∀t ≥ 0,

it follows that

|x(t, x1, u1) − x(t, x1, a)| ≤M |x(t, x1, b) − x(t, x1, a)| ≤ 4Mε, ∀t ≥ T2,

where M is a normality constant for CX . Thus

|x(t, x1, u1) − x̄| ≤ (4M + 2)ε,

for all t ≥ T2. This proves the assertion.

Several remarks are in order. First, this theorem is an infinite-dimensional general-

ization of Proposition V5, number 2) in [6]. In addition, even in the finite dimensional
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case, it holds using weaker assumptions on the characteristic (in [6], an additional stabil-

ity property is imposed on kX(u), for every fixed u ∈ U). See [92] for a counterexample

showing that, in the absence of stability or monotonicity, systems with characteristics

may fail to exhibit the CICS property. Conclusion 1) in Proposition V5 of [6], namely

the stability of the system x(t, x, u) for fixed u(t) → ū, may not hold here in gen-

eral. Nevertheless it holds under relatively weak additional hypotheses: if a, b are such

that a � ū � b, and kX is �-increasing, then (kX(a), kX (b)) is an open neighbor-

hood of x̄, and by monotonicity x(t, x0, v) ∈ (kX(a), kX (b)) for any t ≥ 0, whenever

x0 ∈ (kX(a), kX (b)) and v(t) ∈ (a, b) for all t. Thus stability holds for instance if U is

open and kX is �-increasing. A similar argument shows that stability holds if kX is

an open function. CICS is a strong property of systems with both characteristic and

monotonicity, and it will be used frequently in what follows.

The Small Gain Theorem

Monotone systems have very useful global convergence properties (see Theorem 10

and Theorem 8, but many gene and protein interaction networks are not themselves

monotone. We will consider the closed loop of a monotone controlled system (when it

is defined), forming an autonomous system in which nevertheless the monotonicity will

be of use.

Let u ∈ U∞ be an input. An element v ∈ U will be called a lower hyperbound of u

if there exist sequences v1, v2, . . . → v and t1 < t2 < . . . → ∞ such that for all k ≥ 1

and t ≥ tk, vk ≤ u(t). A similar definition is given if for every t ≥ tk, vk ≥ u(t), and

v is said to be an upper hyperbound of u. Identical definitions are given for the state

space.

Lemma 13 Suppose given a system (4.1) under hypotheses H3,H4. Let u ∈ U∞, and

let v be a lower (upper) hyperbound of u. Then for any arbitrary initial condition

x0 ∈ X, kX(v) is a lower (upper) hyperbound of x(·) = Φ(·, x0, u).

Proof. Suppose v is a lower hyperbound of u(·), the other case being similar, and let

v1, v2, . . . → v and t1 < t2 < . . . → ∞ be as above. For every positive integer n, let
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yn, zn ∈ X be such that diam(yn, zn) < 1/n and Vn := [yn, zn] ∩X is a neighborhood

of kX(vn) (such yn, zn exist by H3).

For n ≥ 1 let

un(t) :=





u(t), 0 ≤ t < tn

vn, t ≥ tn.

The numbers T1 < T2 < . . .∞ are defined by induction as follows: let T0 := 0, and

given Tn−1, let Tn be chosen so that Tn ≥ Tn−1 + 1, Tn ≥ tn and for all t ≥ Tn :

x(t, x0, un) ∈ Vn. By monotonicity, yn ≤ x(t, x0, u) for every t ≥ Tn. Finally, by

construction, yn → kX(v) as Tn → ∞, and so kX(v) is a lower hyperbound of x(·).

We use a result from Dancer [19], slightly adapted to our setup, which will provide

a simple criterion to study the global attractivity of discrete systems

xn+1 = T (xn) (4.4)

when the function T is ≤-increasing.

Lemma 14 Let K be a closed, normal cone with nonempty interior defined on a Ba-

nach space B, and let M ⊆ B satisfy axiom H2 (i.e. with U replaced by M). Let

T : M → M be ≤-increasing and completely continuous. Suppose also that the system

(4.4) has bounded forward orbits, and that there is a unique fixed point x̄ of T . Then

all solutions of (4.4) converge towards x̄.

Proof. It is easy to see that a set C ⊆ B is order-bounded (in the sense of Dancer [19])

if and only if it is bounded in B. Since T sends bounded sets to precompact sets, it

also holds that the orbits of (4.4) are precompact in M .

The same argument can now be used as in Lemma 1 of Dancer [19]: given x ∈ M ,

let ω(x) ≤ u for some u ∈ U , using H2. It then holds that ω(x) ≤ ω(u) pointwise. Let

similarly ω(u) ≤ ω(z), for z ∈M , and let

S = {y ∈M |ω(x) ≤ y ≤ ω(z)}.

Then S is nonempty, closed, and convex, again using H2. By the Schauder fixed point,

one finds f ∈ S such that T (f) = f . But necessarily f = x̄. One similarly concludes

x̄ ≤ ω(x) ≤ x̄, and thus that ω(x) = {x̄}.
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It is a well-known result that if T : R → R is a continuous, bounded, nonincreasing

function, then system (4.4) is globally attractive towards its unique fixed point x̄ if and

only if the equation T 2(x) = T (T (x)) = x has only the trivial solution x̄. The following

consequence of the above lemma generalizes this result to an arbitrary space (see also

Kulenovic and Ladas [64]).

Lemma 15 Assume the same hypotheses of Lemma 14, except that T : M → M is

≤-decreasing instead of ≤-increasing. Then system (4.4) is globally attractive towards

x̄ if and only if the equation T 2(x) = x has only the trivial solution x̄.

Proof. Any solution of T 2(x) = x other than x = x̄ would contradict the global attrac-

tivity towards x̄, since it would imply the existence of a two cycle T (x) = y, T (y) = x

(if x 6= y) or of another fixed point of T (if x = y). Conversely, assume that the only

solution of T 2(x) = x is x̄. Then T 2, being ≤-increasing, satisfies all hypotheses of the

above lemma, and therefore for any x ∈ B it holds that T 2n(x) converges to x̄. But so

does T 2n+1(x), too, for any fixed x ∈ B. The conclusion follows.

Definition 6 We say that a system (4.2) with I/S characteristic kX satisfies the small

gain condition if the following properties hold:

1. The system un+1 = k(un) has bounded orbits for every initial condition u0 ∈ U .

2. The equation k2(u) = u has a unique solution ū ∈ U .

The terminology “small gain” arises from control theory. Classical small-gain theo-

rems (cf. [26, 94, 95, 116]) show stability based on the assumption that the closed-loop

gain (meaning maximal amplification factor at all frequencies) is less than one, hence

the name. These results are formulated in terms of appropriate Banach spaces of causal

and bounded signals, and amount to the fact that the open-loop operator I + F is in-

vertible, and thus solutions exist in these spaces, provided that the closed-loop operator

F has operator norm < 1. The characteristic k in the current setup plays an analogous
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role to F ; observe that, for linear k, norm < 1 would guarantee stability. Versions with

“nonlinear gains” were introduced in [74], and the most useful ones were developed

by [56] on the basis of the notion of “input to state stability” from [105]; see also the

related paper [52, 107]. The current formulation is from [6].

The main result of this chapter, denoted as the small gain theorem or SGT for short,

gives sufficient conditions for the bounded closed loop trajectories of a system (Φ, h),

under negative feedback, to converge globally to an equilibrium. Observe that in view

of Lemma 15, and under the hypotheses H1,H4, a system (4.2) satisfies the small gain

condition if and only if the system un+1 = k(un) is globally attractive to an equilibrium.

The two statements will be used interchangeably in the applications.

Theorem 12 (SGT) Let (4.2) be a system satisfying the assumptions H1, H2, H3,

H4, and suppose that the small gain condition is satisfied. Then all bounded closed loop

trajectories of (4.2) converge towards x̄ = kX(ū).

Proof. Let x0 ∈ X be an arbitrary initial condition, and let x(·), u = h◦x be a bounded

closed loop trajectory and its corresponding feedback, respectively. Let α be a lower

hyperbound of u(·). Such an element always exists: by H3 the range of u(·) is bounded,

and by H2 there exist α, β ∈ U that bound the bounded function u entirely from below

and above, respectively. Then by Lemma 13, kX(α) and kX(β) are lower and upper

hyperbounds of x, respectively. Since h is a continuous, ≤-decreasing function, it is easy

to see that k(α), k(β) are upper and lower hyperbounds of u respectively. Similarly,

one concludes that k2(α), k2(β) are lower and upper hyperbounds of u respectively, by

using Lemma 13 once more. By repeating this procedure twice at a time, it is deduced

that k2n(α), k2n(β) are also lower and upper hyperbounds of x(t), for every natural n.

Now, k2n(v) converges as n → ∞ towards ū for all v ∈ U by H4, the small gain

condition and Lemma 14. But this implies that u converges to ū. This is proven as

follows: given ε > 0, there is n large enough so that

∣∣k2n(α) − ū
∣∣ < ε,

∣∣k2n(β) − ū
∣∣ < ε.

By definition of lower and upper hyperbound, there are a, b ∈ U and T ≥ 0 large enough

such that
∣∣a− k2n(α)

∣∣ < ε,
∣∣b− k2n(β)

∣∣ < ε and for every t ≥ T : a ≤ u(t) ≤ b. The
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normality of the cone KU is used in the same way as in the proof of CICS: for M a

normality constant of KU , it holds that

|u(t) − a| ≤M |b− a| < 4εM,

and so |u(t) − ū| ≤ 4εM + 2ε, for all t ≥ T .

By CICS, the solution x(·) converges to kX(ū). This shows the global attractivity

towards the point x̄ = kX(ū).

Corollary 6 Let (4.2) be a system satisfying assumptions H1,H2,H3,H4 and the small

gain condition. If the closed loop system Ψ(t, x) is well defined and has bounded solu-

tions, and the if equation k2(u) = u has a unique solution, then Ψ(t, x) has a unique

globally attractive equilibrium x̄.

Proof. It is sufficient to observe that every solution x(t) of the closed loop system

Ψ(t, x) is in particular a closed loop trajectory, and to invoke Theorem 12.

The statement of Theorem 12 in [6] is restricted to single input, single output

systems in finite dimensions and doesn’t address the equivalence provided by Lemma 15.

Finally, the same proof as above can be carried out for the case in which h is ≤-

increasing (rather than ≤-decreasing), assuming simply that there is a unique fixed

point ū of k. Nevertheless this latter result is not very strong, since it follows from

weaker hypotheses. See for instance Ji Fa [55], and de Leenheer, Angeli and Sontag

[22].

4.3 Stability in the Small Gain Theorem

In this section we turn to the question of stability for the closed loop trajectories

considered in Theorem 12. Given a vector x0 ∈ X, we say that a system (4.2) has

stable closed loop trajectories around x0 if for every ε > 0 there is δ > 0 such that

|z0 − x0| < δ implies |z(t) − x0| < ε, t ≥ 0, for any closed loop trajectory z(t) with

initial condition z0. Of course, if the closed loop system Ψ(t, x) is well defined, then
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this is equivalent to the stability of Ψ(t, x) at x0. The basic idea is given by the following

lemma.

Lemma 16 Let (4.2) be a monotone system with characteristic kX and a ≤-decreasing

feedback function h. Let y � z in X be such that kXh(y), kXh(z) ∈ (y, z). Then any

closed loop trajectory x(t) of (4.2), with initial condition x0 ∈ [kXh(z), kXh(y)], satisfies

x(t) ∈ (y, z), t ≥ 0.

Proof. Let kXh(z) ≤ x0 ≤ kXh(y), and let x(t) be a closed loop trajectory of (4.2) with

initial condition x0. Suppose that the conclusion doesn’t hold, and let by contradiction

t0 := min{t ≥ 0 |x(t) 6∈ (y, z)}.

It is stressed that as x(0) ∈ (y, z), x(·) is continuous, and the interval (y, z) is open, it

holds that x(t0) 6∈ (y, z). Nevertheless u(·) = h ◦ x(·) satisfies h(z) ≤ u(t) ≤ h(y) for

t < t0, and therefore also h(z) ≤ u(t0) ≤ h(y) by continuity. Then by monotonicity

kX(h(z))=x(t, kX (h(z)), h(z))≤x(t, x0 , u)≤x(t, kX (h(y)), h(y))=kX (h(y)),

for all t ≤ t0, and in particular,

y � kXh(z) ≤ x(t0) ≤ kXh(y) � z,

which is a contradiction.

In the case in which h is ≤-increasing the lemma also holds. One may interchange

“h(y)” and “h(z)” in the above proof to obtain the corresponding stability result.

Define γ(x) := kXh(x). The result in Lemma 16 is applied systematically in the

following proposition to guarantee the stability of the closed loop.

Lemma 17 Under the hypotheses of Theorem 12, let x̄ = kX(ū), and let {yn, }, {zn}

be sequences in X such that yn, zn → x̄ as n → ∞. Assume also that for every n,

γ(zn) � x̄ � γ(yn) and γ(yn), γ(zn) ∈ (yn, zn). Then (4.2) has stable closed loop

trajectories around x̄.
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Proof. Let V be an open neighborhood of x̄. For ε > 0, let yn, zn be within distance

ε of x̄, for some n large enough. For x ∈ (yn, zn), one has |x− yn| ≤ 2MXε and

|x− x̄| ≤ 2MXε+ε, by normality. Thus for ε small enough, (yn, zn) ⊆ V . It follows that

(γ(zn), γ(yn)) is a neighborhood of x̄ with the property that all closed loop trajectories

with initial condition in this set are contained in V (by the previous lemma).

The following lemma provides a simple criterion for the application of Lemma 17.

Lemma 18 Under the hypotheses of Theorem 12, suppose that kX is �-increasing and

h is �-decreasing. Suppose that there exists z ∈ int X such that x̄� k2(z) � z. Then

(4.2) has stable closed loop trajectories around x̄.

Proof.

Recall that x̄ is a fixed point of γ. Let y := γ(z) − ν, where ν � 0 is small enough

that γ(y) � z; this is possible by continuity of γ. It holds that

y � γ(z) � x̄� γ(y) � z.

It is easy to see how this implies that

γ2(y) � γ4(y) � . . .� x̄� . . .� γ4(z) � γ2(z),

using the fact that γ2 is �-increasing. By Lemma 15, yn := γ2n(y) and zn := γ2n(z)

converge to x̄, and thus these sequences satisfy the hypotheses of Lemma 17.

The following theorem will ensure the stability of the closed loop in the case that

the input space is one or two-dimensional. Note that this can be the case even if X is

infinite dimensional.

Theorem 13 Under the hypotheses of Theorem 12, let BU = R or BU = R2, and let

U ⊆ BU be a (not necessarily bounded) closed interval with positive measure. If kX

is �-increasing and h is �-decreasing, then (4.2) has stable closed loop trajectories

around x̄.



66

Proof. Recall the notation k(u) = hkX(u). It is only needed to prove in both cases that

there exists z ∈ X such that x̄ � k2(z) � z, by Lemma 18. In the case BU = R, let

c ∈ int U , c > ū. Then necessarily γ2(c) < c, since otherwise the sequence c ≤ γ2(c) ≤

γ4(c) ≤ . . . would not converge towards ū. Using the fact that kX is �-increasing, it

follows that z := kX(c) satisfies x̄� γ2(z) � z.

If BU = R2, let A be a 2 × 2 matrix such that AKU = (R+)2, and define φ(u) =

A(u − x̄), κ(u) = φkφ−1(u). Note that u � v if and only if Au ≤(1,1) Av, and that

the system un+1 = κ(un) is �-decreasing in the cooperative order (1, 1) and converges

globally towards 0.

We want to find c �(1,1) 0 such that κ2(c) �(1,1) c, since then the vector z :=

kXφ−1c will satisfy ū � γ2(z) � z. Suppose by contradiction that there is no such

point. By global attractivity, for any u�(1,1) 0 it must hold κ2(u) 6�(1,1) u. Then the

function α(u) := κ2(u) − u is such that

α(R+ × R+) ⊆ (R+ × R−) ∪ (R− × R+).

But if there existed v, w >(1,1) 0 such that α(v) ∈ R+ × R−, α(w) ∈ R− × R+, then

by joining the points v and w with a line one would find a point q >(1,1) 0 such that

α(q) = 0 by continuity, that is, a nonzero fixed point of κ2u = u. This contradicts

attractivity. Assume therefore that κ2(u)1 ≤ u1, κ
2(u)2 ≥ u2 holds for all u �(1,1) 0,

the other case being similar. Then 0 < u2 ≤ κ2(u)2 ≤ κ4(u)2 ≤ . . ., which also violates

attractivity. The conclusion is that 0 � κ2(c) �(1,1) c for some c.

The following corollary of Lemma 18 strengthens the hypotheses of Theorem 12

to imply the stability of the closed loop in arbitrary input spaces. Thus, instead of

assuming that the function u → k(u) defines a globally attractive system and is ≤-

decreasing, we will assume that its linearization T around ū defines a globally attractive

system and that u < v implies T (u) � T (v). The linearization is taken here in the

usual sense of Frechet differentiation.

Corollary 7 Under the hypotheses of Theorem 12, suppose that kX is �-increasing

and h is �-decreasing. Assume that the linear operator T = k′(ū) is well defined
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and compact, and that i) un+1 = T (un) is a globally attractive discrete system, ii)

T (KU − {0}) ⊆ −int KU . Then (4.2) has stable closed loop trajectories around x̄.

Proof. By i), the operator T 2u = (k2)′(u) defines a globally attractive discrete system.

Hence the point spectrum of T 2 is contained in the open complex unit ball. By ii), it

holds that T 2 is a strongly monotone operator, and in particular λ := ρ(T ) > 0. By

the Krein Rutman theorem, there is v � 0 such that T 2(v) = λv. But since 0 < λ < 1,

it holds that 0 � T 2(v) � v. Let |v| = 1 and ε > 0 be such that

0 � B(ε, T 2(v)) � B(ε, v)

pointwise in U . Letting δ > 0 be small enough that
∣∣k2(ū+ u) − T 2(u) − ū

∣∣ < ε |u|

whenever |u| < δ, it follows that

ū� k2(u+ λδv) � ū+ δv.

The conclusion follows from Lemma 18.

An Application of Theorem 13

The local stability of finite-dimensional systems can usually be verified by calculating

the eigenvalues of the linearized system around the equilibrium. Nevertheless further

understanding of the stability of the system is difficult to extract in this way, especially

in the case of large-scale systems and variable (or unknown) parameters. One finite-

dimensional illustration of Theorem 13 can be found in Section VII of [6], where global

attractivity is proven for a model of MAP kinase cascade dynamics. We prove here

that this system is actually asymptotically stable. The fact that the model satisfies the

hypotheses of Theorem 12 is mostly guaranteed from the last paragraph of Section 4.1

of this chapter. It will be assumed here, since later examples will treat these hypotheses

at length.

The system in question can be written as the closed loop system of the following

controlled dynamical system (after a simple change of variables):
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ẋ = θ1(1 − x) − uθ2(x)

ẏ = θ3(1 − y − z) − (1 − x)θ4(y)

ż = (1 − x)θ5(1 − y − z) − θ6(z)

Ẏ = θ7(1 − Y − Z) − zθ8(Y )

Ż = zθ9(1 − Y − Z) − θ10(Z),

h(x, y, z, Y, Z) =
K

1 + g1+Z
g2+Z

, (4.5)

where θi(x) := aix/(bi + x), for positive constants ai, bi, K > 0, and g2 > g1 > 0. It

is shown in [6] that (4.5) is monotone with respect to the cones R+ for the input, and

R− × R− × R+ × R− × R+ for the states. It is only needed to verify that kX is �-

increasing and h is �-decreasing, the latter of which can be easily checked. To verify the

former, note that the system is a cascade of three subsystems x→ (y, z) → (Y,Z) with

characteristic, and that it is enough to verify that each of the characteristic functions

is �-increasing. This is done for the third subsystem, the other two being very similar.

For every fixed input z of the third subsystem, the state converges towards the

globally attractive state (Y,Z) = k(Y,Z)(z). By monotonicity, if z1 < z2 and (Yi, Zi) =

kX(zi), i = 1, 2, it follows that Z1 ≤ Z2, Y1 ≥ Y2. But by definition zi = θ7(1 − Yi −

Zi)/θ8(Yi), and thus one cannot have both Z1 = Z2 and Y1 = Y2. On the other hand,

since also by definition it holds that

θ8(Y )θ10(Z) = θ7(1 − Y − Z)θ9(1 − Y − Z),

and all θj are strictly increasing, then Y cannot decrease without Z increasing, and

vice versa. Putting all together, one concludes that z1 < z2 implies Z1 < Z2, Y1 > Y2,

so that in particular k(Y,Z) is �-increasing. A similar argument for the remaining sub-

systems shows that the characteristic of (4.5) is �-increasing, as desired, and stability

of (4.5) follows.
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Chapter 5

Applications

5.1 Delay Systems: An Overview

The abstract treatment we have followed allows us to specialize to situations that

generalize the single input, single output setup considered in [6]. From now on, we

will rather consider the introduction of delay terms in finite-dimensional systems of

ODEs. One example of such systems is

ẋ(t) = Ax(t− r) +Bx(t), (5.1)

where A,B are n×n constant matrices. Note that the initial condition of such a system

would have to include not only x(−r) and x(0), but also all x(s) for −r < s < 0.

Given r ≥ 0 (the delay of the system), a ≤ ∞, x : [−r, a) → Rn and 0 ≤ t < a,

define xt ∈ X as xt(s) = x(t+ s), s ∈ [−r, 0]. A general autonomous delay system can

be thus written as

ẋ(t) = f(xt), x0 = φ, (5.2)

where φ : [−r, 0] → Rn, and f has values in Rn. The state of the system at time t is

considered to be xt (as opposed to just x(t)). Thus even though the equation is defined

in a finite dimensional context, the proper dynamical system Φ(t, φ) = xt is defined in

a suitable state space of such functions.

Similar comments apply to the controlled system

ẋ = f(xt, α(t)), (5.3)

which defines a dynamical system Φ(t, φ, α) = xt, for every input α : [0,∞) → U . The

set U of input values will be allowed to consist itself of functions, in order to include

delays in the inputs. The delay rinput used for input values will nevertheless be allowed
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to be different from that used for states, which will be referred to as rstate. Thus if α

is an input, then for every t ≥ 0, α(t) : [−rinput, 0] → U0 is a function α(t)(s) (though

not necessarily of the form α(t) = ut for some u : R+ → X0, see below). It will be clear

from the context when α is an input (α ∈ U∞), and when it is an input value (α ∈ U).

Let U0 ⊆ Rm be a closed box (possibly unbounded), and X0 ⊆ Rn be open or, in

the case of KX0 being an orthant cone, a box including some or all of its faces. Define

BX := C([−rstate, 0],Rn), X := C([−rstate, 0],X0)

under the supremum norm. The tentative choice of the function space

BU = L∞([−rinput, 0],R
n)

carries with it a problem: for a delay system such as

ẋ = f(xt, ut) = u(t− 1) − u(t) + x(t− 1) − x(t),

the function f cannot have as argument an input value

α ∈ L∞([−rinput, 0],R
n),

since such functions are not defined pointwise. Thus in the case of discrete delays, the

input space will be restricted to BU := C([−rinput, 0],Rm), U = C([−rinput, 0], U0).

In the case of distributed delays, this problem disappears; for this reason BU will be

allowed to be either L∞([−rinput, 0],Rn) or C([−rinput, 0],Rm), and U will be defined

accordingly.

Definition 7 A delay dynamical system consists of a tuple (X,U, f), f : X×U → Rn,

and X, U as above for some X0 ⊆ Rn, U0 ⊆ Rm, with the following property: for any

initial condition φ ∈ X and any measurable, locally bounded α : R+ → U , there is a

unique maximally defined, absolutely continuous function x such that

ẋ(t) = f(xt, α(t)) for almost every t, x0 = φ. (5.4)

The lowercase Greek letters φ, ψ will be used to refer to elements of X, that is,

φ, ψ : [−r, 0] → X0 continuous, and α, β will be used for elements in U as well as for

inputs in U∞.
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In the case that U = C([−rinput, 0], U0), note that for a discontinuous input

u : R+ → U0,

the function t→ ut is not a well defined input in U0. The following lemma will provide

a source of allowed inputs for each choice of the space BU . (Recall that an input u ∈ U∞

is any locally bounded, measurable function u : R+ → U .)

Lemma 19 Let u : [−rinput,∞) → U0 be a continuous function. If

BU = L∞([−rinput, 0],R
m),

or if

BU = C([−rinput, 0],R
m),

then the function α : [0,∞) → BU , defined as α(t) := ut, is a well defined input in U∞.

Let BU be any of the two spaces above, and consider τ1, τ2, . . . τk, where τi ∈

[−rinput, 0] for all i. If u ∈ (U0)∞, and if U0 is convex, then there exists an input

α ∈ U∞ such that α(t)(τi) = ut(τi), for all i and t ≥ 0.

Proof. A continuous function u : [−rinput,∞) → U0 is uniformly continuous on every

closed bounded interval. This implies that ‖us − ut ‖∞→ 0 if s → t, and therefore

that the function α(t) = ut is continuous, for both choices of the space BU . The local

boundedness of α follows directly from that of u.

To prove the second statement, and assuming without loss of generality that the τi

are pairwise distinct, consider a continuous partition of unity

ν1 . . . νk : [−rinput, 0] → [0, 1]

such that νj(τj) = 1 for all j = 1 . . . k and νj(τi) = 0, i 6= j. Let

α(t)(s) := ν1(s)u(t+ τ1) + . . .+ νk(s)u(t+ τk).

For every t ≥ 0, α(t) is a linear combination of continuous functions, and therefore

α(t) ∈ BU . To prove measurability, note that each function νi(s)u(t+ τi) is measurable

by writing it as the composition of

R+ ζ−→ C([−rinput, 0], [0, 1]) × Rm ξ−→ BU ,
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where ζ(t) := (νi, u(t)), ξ(φ, q) := q φ, ζ is measurable and ξ is continuous. It holds that

Range α(t) ⊆ U0 for every t, by convexity of U0. The local boundedness of α follows

from that of u, and the fact that α(t)(τi) = ut(τi) for all t and i can be easily verified.

The second statement of the above lemma is useful when considering a system (5.3)

in which f(φ, α) only depends on the values of φ at discrete times τ1, . . . , τk, that is, in

the case of point delays. In this case, given an input u in U0, the function ut can be

replaced by the input α in Lemma 19 for all practical purposes.

In the Appendix II the question is addressed as to which functions f : X × U →

Rn generate a well defined delay dynamical system. The main result is the following

theorem, where X0, U0,X, U are as described in the end of Section 4.1.

Theorem 14 Let f : X × U → Rn be continuous and locally Lipschitz on X, locally

uniformly on U . Let also f(φ,C) be bounded, for any φ ∈ X, C ⊆ U closed and

bounded. Then the system (5.4) has a unique maximally defined, absolutely continuous

solution x(t), for every input α(t) and every initial condition φ ∈ X.

We give conditions on X0, U0 and the underlying cones in Rn,Rm that guarantee

that the general hypotheses H1,H2,H3 are satisfied.

Lemma 20 Let U0 be a closed box (possibly unbounded), and let X0 be open or, in

the case of KX0 being an orthant cone, a box including some or all of its faces. Let

KU0 ⊆ Rm,KX0 ⊆ Rn be closed cones with nonempty interior, rinput, rstate ≥ 0,

BX , BU as in Definition 7, and let KX := {φ ∈ BX | φ(s) ∈ KX0 ∀s}, KU := {α ∈

BU | α(s) ∈ KU0 a.e. s}. Then conditions H1,H2 and H3 in the general hypotheses are

satisfied for X,U ,KX ,KU .

Proof. By Lemmas 2 and 3, KX0 ,KU0 are normal. Let M,N be normality constants

for KX0 ,KU0 respectively. If 0 ≤ φ ≤ ψ in X, that is 0 ≤ φ(s) ≤ ψ(s) in X0 for every

s, then it holds that |φ(s)| ≤ M |ψ(s)| , for every s. This asserts the normality of KX

with normality constant M . One proves similarly that KU is normal.



73

Let a ∈ Rm bound the unit ball from above (see Section 4.1). Then the constant

function â bounds the unit ball in BU . This implies that KU has nonempty interior.

For α ∈ BU , the function

d(α) := ess sup {dist(α(s),KU0)| s ∈ [−rinput, 0]}

is continuous, which implies that KU = d−1(0) is closed. The same argument applies

to KX .

If X0 is open, Range φ will remain a finite distance away from Xc
0, for every φ ∈ X.

Thus there is an open neighborhood around φ contained in X, which shows that X is

open and satisfies the ε-box property. Let s = (s1, . . . sn), si = ±1 for all i, defining an

orthant cone in a natural way as in Section 4.1. Let X be a box containing some or all

of its sides. Consider a given state φ ∈ X and ε > 0, and let

η :=
1

3
√
n

min(ε,dist(Range(φ), ∂X0 −X0).

Define π1, π2 : X0 → X0 as

π1(x) := inf{x+ q · s | q ∈ (−η, η), x+ q · s ∈ X},

π2(x) := sup{x+ q · s | q ∈ (−η, η), x+ q · s ∈ X},

where the infimum and supremum are taken with respect to the order ≤s.

Given φ ∈ X, let φi(s) := πi(x(s)), i = 1, 2.. See Figure 5.1 for an illustration of

these two functions. It is clear that π1 and π2 are both continuous functions. Then

(y =)φ1, (z =)φ2 ∈ X by construction, and

diam[φ1, φ2] = |φ2 − φ1| ≤ |2η(1 . . . 1)| = 2η
√
n < 3η

√
n ≤ ε.

Also, it is easy to see that

[φ1, φ2] = X ∩ [φ− ηs, φ+ ηs].

This implies that [φ1, φ2] ⊆ X is a neighborhood of φ, and H3 thus holds for X.

In the case BU = C([−rinput, 0],Rm), the same proof above applies to prove H3 for

U , even if some or all of its sides are missing. However, if BU = L∞([−rinput, 0],Rm),
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φ

φ1

φ2
d
3

d

Figure 5.1: Shown in the picture is the box X0 with one open and three closed faces,
and φ1 ≤ φ ≤ φ2 in bold. Here d = dist(Range φ, ∂X −X0), and η = d/(3

√
2). Note

that |φ(0) − φ1(0)| = |η(1, 1)| = d/3.

then for a given α ∈ U the distance between the range of α and ∂U \ U may well be

zero. One uses the fact that U is closed to show that for η = 1
2
√
m
ε, π1, π2 : U0 → U0 are

well defined. Since the πi are continuous, αi(s) = πi(α(s)) are measurable functions.

The rest of the proof that U satisfies H3 follows similarly as above.

It will be proved that U satisfies H2. It is clear that U is closed and convex. In the

case BU = C([−rinput, 0],Rm), and given a bounded set A ⊆ U , consider the bounded

set A0 defined as the union of all the images of the functions in A. Use H2 on A0 to

find a, b ∈ U0 such that a ≤ A0 ≤ b. Then the constant functions â, b̂ do the same

on the set A. In the case BU = L∞([−rinput, 0],Rm), the axiom of choice allows to

define A0, by picking a particular point-by-point defined function for each u ∈ A. After

possibly changing the values of each function at sets of measure zero to ensure that A0

is bounded, the result follows as before.

We give a convenient criterion to check for monotonicity in the orthant cone case,

which is based on Theorem 1.1 of Smith [101]. Refer to Figure 5.2 for an illustration

of this criterion. We give only a sketch of the proof, which is along the same lines as

that for Lemma 5.

Proposition 4 (Monotonicity Criterion) Let (5.3) be a delay system, and let KX
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φ

ψ

φ(0) ψ(0)

f(φ,α)

f(ψ,α)

Figure 5.2: Monotonicity Criterion. Illustrated are two states φ, ψ : [−rstate, 0] → R2

with φ ≤ ψ and φ2(0) = ψ2(0). In the cooperative case, the criterion requires that
f2(φ, α) ≤ f2(ψ,α).

be the orthant cone defined by the tuple s = (s1 . . . sn). Assume that i) α → f(φ, α)

is an increasing function, for every φ ∈ X, and that ii) for every α ∈ U , φ ≤ ψ, and

if φi(0) = ψi(0) for some i, it holds that sifi(φ, α) ≤ sifi(ψ,α). Then system (5.3) is

monotone with respect to its underlying cones.

Sketch of Proof. Let α, β be two inputs, and assume α(t) ≤ β(t) for every t (if this only

holds a.e. t, one can change the value of these functions at a set of measure zero). Let

h1(t, φ) := f(φ, α(t)), h2(t, φ) := f(φ, β(t)). Theorem 5.1.1 of Smith [101] cannot be

applied directly, even in the cooperative case, since the functions hi are not necessarily

continuous on t. Nevertheless by writing the absolutely continuous solution x(t, φ;hi)

of ẋ = hi(t, xt) as an integral (see Bensoussan et al. [9]) one shows that, for e� 0 in X

and hεi(φ, t) := εe+ hi(φ, t), x(t0, φ;hεi) converges towards x(t0, φ;hi) as ε→ 0 for each

t0. The rest of the argument is as in [101] or Lemma 5: define e := (s1, s2, . . . sn) � 0.

Show by contradiction that x(t, φ;h1) � x(t, φ;hε2) for all t and small ε, and let ε tend

to zero. .

Suppose that the delay system (X,U, f) allows an I/S characteristic kX : U → X.

Note that φ = Φ(t, kX(α), α̂) is constant over t, and thus that any solution of (5.3)

with constant input α̂ starting at kX(α) must satisfy xt = kX(α) for all t ≥ 0. This

easily implies that kX(α) is a constant function, for every α. Hence, since kX has a

finite dimensional range, it is easy to verify when it is completely continuous, namely

the image of every bounded set should be bounded. One can also think of kX as having
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values in X0, and when evaluating un+1 = k(un) it is sufficient to consider constant

initial conditions.

In the applications of this chapter the feedback function h : X → U will be defined

as h(φ)(s) = h0(φ(s)), for some h0 : X0 → U0. In such case, it holds that ū is itself

a constant vector. Also note that if z ∈ Rm is such that ū � k2(z) � z, then the

constant function ẑ has this property in U . Therefore one can apply Theorem 13 to

prove stability in the context of delay systems.

To prove that Φ(t, φ, α) is a dynamical system, it is important to verify that the

semiflow condition is satisfied. To avoid confusion, this is best done for an abstract

input space U ; a short proof will be given in the appendix.

As a first example of SGT for delay systems consider the following toy model, from

Stepan [108]. It is linear, so that many different (and more comprehensive) approaches

are available. It is included here only in order to illustrate how to use the small gain

theorem for delay systems in practice.

Example 1:

Consider the system

ẋ1(t) = −a11x1(t) − a12x2(t− ξ)

ẋ2(t) = a21x1(t− τ) − a22x2(t),
(5.5)

where a11, a12, a21, a22 are positive real numbers, ξ, τ ≥ 0. Define for instance X0 =

(R+)2. If xt ≤ zt componentwise, and x2(t) = z2(t), then certainly

ż2(t) − ẋ2(t) = a21z1(t− τ) − a22z2(t) − a21x1(t− τ) + a22x2(t) ≥ 0.

If the same were true for x1, z1, then one could conclude that (5.5) is cooperative, by

Theorem 4. Since this is not the case, consider the controlled system

ẋ1(t) = −a11x1(t) − a12u(t− ξ)

ẋ2(t) = a21x1(t− τ) − a22x2(t)
, u(t) = h(x(t)) = x2(t),

whose closed-loop system is (5.5). A natural choice for the delays is rstate = τ, rinput =

ξ. This system satisfies the hypotheses of Proposition 4, provided that the cone in
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BU = C([−rinput, 0],R) is defined as KU = {φ|φ(s) ≤ 0 ∀s}. All hypotheses of

Lemma 20 are satisfied, so that assumptions H1,H2,H3 hold. The I/S characteristic of

the system can be easily seen to exist and be defined by kX(u) = (x̂1, x̂2), where

x1 =
a12

a11
u(−ξ), x2 =

a21

a22

a12

a11
u(−ξ)

for any u ∈ R. Since it is continuous and sends bounded sets to bounded sets, H4 is

satisfied. We are left with the hypothesis H5 and the discrete convergence condition,

which hold together for the function k(u) = a21
a22

a12
a11
u if and only if a12a21 < a11a22.

In this latter case, Theorem 12 can then be applied, showing that the closed loop

(5.5) is globally attractive towards its equilibrium point. Theorem 13 shows that this

equilibrium is in fact globally asymptotically stable.

Example

The following system corresponds to the cyclic gene model with repression studied in

[100]. Let y1 be a messenger RNA, which produces an enzyme y2, which produces

another enzyme y3, and so on for p ≥ 2 steps. Let yp in turn inhibit the production of

y1, closing the cycle and inducing the repression. The system is modeled as

ẏ1 = F (Lpytp) − a1y1(t)

ẏi = Li−1y
t
i−1 − aiyi(t), 2 ≤ i ≤ p,

(5.6)

where a1, . . . , ap > 0, F : [0,∞) → (0,∞) is a strictly decreasing continuous function,

and yti stands for the delay term yt used above, with superscripts to allow indexing.

The delay is assumed to be r > 0 for all yi for simplicity. The operators Li are of the

form

Liφ =
∫ 0

−r
φ(s) dνi(s),

for positive Borel measures νi on [−r, 0], 0 < νi([−r, 0]) <∞. SetX = C([−r, 0], (R+)p).

Since F is decreasing, this system is not monotone. Nevertheless the induced controlled

system

ẏ1 = F (Lpα(t)) − a1y1(t)

ẏi = Li−1y
t
i−1 − aiyi(t), 2 ≤ i ≤ p,

h(yt) = ytp = α(t), (5.7)
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will fit the setup of our results. Indeed, letting U = L∞([−r, 0],R+),1 the system

satisfies the hypotheses of Theorem 14. It also fulfills the monotonicity criterion using

the cones

KX = C([−r, 0], (R+)p), KU = L∞([−r, 0],R−)

(note the negative sign). Lemma 20 is also satisfied, thus guaranteeing hypotheses H1-

H3. Fixing α ∈ U , the controlled system can now be shown to converge towards the

constant function (ŷ1, . . . ŷp), where

y =
(
F (Lpα)
a1

, . . . ,
F (Lpα)
a1 · · · ap

)
.

To see this, note first that the convergence of y1 towards the constant function F (Lpα)/a1

is elementary. The convergence of yt2 towards (the constant function) F (Lpα)/(a1a2) is

also evident, by considering the controlled linear system

ẏ2 = β − a2y2(t),

where β(t) := L1y
t
1, and by noting that β(t) must converge. Inductively, the existence

of the characteristic follows. Noting that kX sends bounded sets to bounded sets, it

follows that H4 holds. The item 1 in the small gain condition holds clearly, since F is

bounded (see below). To see that any solution y(t) of (5.6) is bounded, let z1(t) be a

solution of z′ = F (0) − a1z, with initial condition z1(0) = y1(0). Then y1(t) ≤ z1(t) for

all t ≥ 0: to see this, note that the function w(t) = z1(t) − y1(t) satisfies the equation

w′(t) = F (0) − F (Lpα(t)) − a1w,

where F (0)−F (Lpα(t)) ≥ 0 and w(0) = 0. Now, since z1(t) is monotonic and converges

towards F (0)/a1, y1(t) is eventually bounded from above by F (0)/a1 + ε, for any ε >

0. In fact, F (0)/a1 is an upper hyperbound of y1(t) under the usual order. The

boundedness of y1(t) is used to carry out a very similar argument in order to show that

y2(t) is also eventually bounded, and the same holds for all other variables. This shows

that all the solutions of the closed loop system are bounded.

1Here it is assumed that νi(E) = 0 whenever the Lebesgue measure of E ⊆ [−r, 0] is zero. In the
case of point delays, one would set U = C([−r, 0],R+) as before.



79

By Theorem 12, system (5.6) is globally attractive whenever the discrete system

un+1 = k(un) =
F (Lpun)
a1 · . . . · ap

is globally attractive. Note that even if u1 is a function, still u2, u3, . . . can be as-

sumed to be constants, so that one can further reduce the system to be 1-dimensional.

Whenever the hypotheses of Theorem 12 apply, the stability of the system is en-

sured by Theorem 13, the remaining hypotheses being trivially verified (especially since

Lp(u) = Lp(L̂p(u)/νp([−r, 0])) for u ∈ U). The same procedure can be applied through-

out to the coupled system of an odd number of repressions of the form (5.6), as done

in Smith [100]. This is in accord with the comments in p. 188 of that article:

The remarkable fact is that the dynamics of the two systems [discrete and

continuous] appear to correspond both at the level of local stability analysis

and at the level of global dynamics. This is potentially a very useful fact,

both for model construction and for analysis of particular models.

An example of a system (5.1) which is globally attractive is given by the function

F (x) := A/(K + x), for A,K > 0 arbitrary (the division by the constants a1 . . . ap is

here irrelevant). By Lemma 15, one only needs to show that the equation F (F (x)) = x

has a unique solution. Such a solution would satisfy x = A/(K + F (x)), that is

A = Kx+
Ax

K + x
.

The right hand side is an increasing function that starts at the origin and grows to

infinity; thus x is the unique intersection of this function with y = A, and the statement

follows.

5.2 A model of the lac operon

The following dynamical system was proposed by Mahaffy and Savev [69] to describe

the dynamics of lactose metabolism in E.Coli, which is orchestrated by the genes known

as the lac operon. Some of the main results in [69] concern the global stability of the
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system; we will apply the small gain theorem in its delay form to prove and extend

these results.

The compounds involved in the system are the lac operon mRNA, the proteins β-

galactoside permease, β-galactosidase (β-gal for short) and lactose, which are denoted

respectively by x1, x2, x3, x4. (Actually it is isolactose that regulates the operon, but

lactose and isolactose are considered identical in this model.) All substances degrade

at a fixed rate except for the lactose, which is actively digested by the enzyme β-gal.

The gene is activated whenever lactose is present in the system; more energetic sources

of food, like glucose, are assumed not to be present. The mRNA then induces the

production of permease and β-gal, and the permease makes the cell membrane more

permeable to lactose, so that it can more efficiently enter the cell. Mahaffy et al. assume

that the production of mRNA has a natural saturation point, with Michaelis-Menten

dynamics. This amounts to the presence of, say, a constant number of RNA polymerase

molecules. After introducing an arbitrary delay τ1 as a result of the transcription of

x1, as well as a delay τ2 as a result of the translation of x2, x3, one can make a change

of variables and arrive to the system with a single delay

ẋ1(t) = g(x4(t− τ)) − b1x1(t)

ẋ2(t) = x1(t) − b2x2(t)

ẋ3(t) = rx1(t) − b3x3(t)

ẋ4(t) = Sx2(t) − x3(t)x4(t).

(5.8)

Here g(θ) := (1 + Kθρ)/(1 + θρ), K > 1, all other constants are positive, and all

variables are nonnegative. We will illustrate our main result by writing this system as

the negative feedback loop of a controlled monotone system, in the way illustrated by

Figure 5.3. The resulting system, which is modeled with rstate = τ, rinput = 0, is

ẋ1(t) = g(v(t)) − b1x1(t)

ẋ2(t) = u(t) − b2x2(t)

ẋ3(t) = rx1(t) − b3x3(t)

ẋ4(t) = Sx2(t) − x3(t)x4(t),

h(x(t)) = (x1(t), x4(t− τ)).
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Figure 5.3: On the left, the digraph associated with equation (5.8). The dotted ar-
rows are replaced by inputs on the right digraph, making the system into a controlled
monotone one. Setting u = x1, v = x4 closes the loop back to (5.8).

This model can be verified to be monotone with respect to the cones

KX = C([−rstate, 0],R+ × R− × R+ × R−), KU = R− × R+

using our monotonicity criterion. (In fact, monotonicity with respect to some orthant

cone is equivalent to the property that the associated digraph doesn’t have any undi-

rected closed loop with an odd number of ‘−’ signs.) See [6] for details, and Appendix

I for a more systematic treatment in the finite dimensional case. It is clear that the

closed feedback loop of this system is (5.8).

It will be shown that this controlled system has a well defined characteristic, by

appealing to Figure 5.3 and by noting that one can write the system as a cascade of

asymptotically stable, one-dimensional systems. In fact, in the notation of (5.3), it

holds in this example that f(xt, α) = f(x(t), α), and that the delay is only used for

defining the feedback function. If the delay in the state is ignored and the controlled

system is viewed as a strictly finite dimensional system, it becomes obvious that a

fixed control (u, v) will induce a globally asymptotically stable equilibrium, which is

calculated to be

x1 =
g(v)
b1

, x2 =
u

b2
, x3 =

r

b1b3
g(v), x4 =

Sb1b3u

rb2g(v).

After proving this, it is evident that the state kX(u, v) = (x̂1, x̂2, x̂3, x̂4) is a globally

asymptotically stable state. This proves the existence of the I/S characteristic. The

feedback characteristic of the system is

k(u, v) =
(

1
b1
g(v),

Sb1b3
rb2

u

g(v)

)
. (5.9)
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To guarantee that this open loop system satisfies the hypotheses of the main result,

let X0 = (R+)4, U0 = (R+)2, and note that Lemma 20 can be directly applied to prove

H1,H2,H3. The monotonicity and existence of the characteristic was shown above, and

since kX sends bounded sets to bounded sets (g(θ) is bounded from above byK and from

below by 1), condition H4 also holds. Since the first component of k(u, v) is bounded

from below and above by 1/b1 and K/b1 respectively, it is easy to see that the orbits of

the discrete system (5.9) are uniformly bounded after two steps. Therefore item 1 in the

small gain condition is satisfied. To see that a solution x(t) of system (5.8) is bounded,

let z1(t), z2(t) be the solutions of the systems z′ = 1−b1z and z′ = K−b1z respectively,

with initial conditions zi(0) = x1(0). It is easy to see that z1(t) ≤ x1(t) ≤ z2(t) for all

t ≥ 0, see the previous example. Since z1(t) (z2(t)) converges towards 1/b1 (K/b1), it

holds that x1(t) is eventually bounded from below and above by fixed positive constants

1/b1 − ε and K/b1 + ε respectively. In fact, 1/b1 (K/b1) is a lower (upper) hyperbound

of x1(t) in the usual order. Using this fact, the same procedure is used to show that

x2, x3 are bounded, and this in turn implies that x4 is also bounded (see also [69]). This

shows that all the solutions of the closed loop system are bounded.

Note that k(u, v) has a unique fixed point

u =
1
b1
g(
Sb3
rb2

), v =
Sb3
rb2

.

For any choice of the parameters such that the discrete system (un+1, vn+1) = k(un, vn)

is globally attractive to this equilibrium, it follows from Theorem 12 that the original

model (5.8) is globally attractive to its unique equilibrium. In those cases, the stability

of (5.8) will be ensured by Theorem 3 and by the strict monotonicity of kX and h. For

the remainder of this example, we will concentrate on finding sufficient conditions for

the global attractivity of the discrete system.

In the global analysis of model (5.8), Mahaffy and Savev [69] restrict their attention

to the case ρ = 1, and they prove three results that provide sufficient conditions for

global attractivity. We will come to the exact same conclusions, by writing the system

associated to (5.9) as a scalar discrete system of second order, and by appealing to the

attractivity results known for such systems. For arbitrary ρ we will also prove a new
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result, concerning global attractivity for any choice of the parameters b1, b2, b3, S and r,

provided that an inequality holds for ρ,K. Let ρ = 1, and consider the discrete system

(un+1, vn+1) = k(un, vn). (5.10)

It holds that un+1 = 1
b1
g(vn), and

un+2 =
1
b1
g

(
Sb1b3
rb2

un
g(vn)

)
=

1
b1
g

(
Sb3
rb2

un
un+1

)
=

βun+1 + γun
Bun+1 + Cun

, (5.11)

where here ρ = 1 in g(θ), and

β :=
1
b1
, γ := K

Sb3
rb1b2

, B := 1, C :=
Sb3
rb2

.

If the parameters of (5.11) are such that this discrete system has a globally attractive

equilibrium for all initial conditions u0, u1 > 0, then (5.10) has globally attractive

solutions for any initial condition u, v ≥ 0. (If u = 0 or v = 0, simply iterate (5.9) a

few times and the states will become strictly positive.) The global attractivity of (5.10)

clearly also implies that of (5.11).

The book by Kulenovic and Ladas [64] deals exclusively with rational discrete sys-

tems of second order. It follows from their treatment of equation (5.11) that for

p := β/γ, q := B/C, and p < q, global attractivity holds (that is, with respect to

arbitrary real initial conditions for which the iterations are well defined, including

(u0, u1) ∈ (0,∞) × (0,∞)) if q < pq + 1 + 3p. Furthermore, instability occurs if

q > pq + 1 + 3p (see Theorem 6.9.1 in [64]).

In our case p = rb2
KSb3

< rb2
Sb3

= q, and attractivity holds if and only if

0 < q2 + 3q −Kq +K, q :=
rb2
Sb3

. (5.12)

For instance, if q < 1 then 0 < K − qK and thus (5.12) follows. This corresponds

to Proposition 4.1 in [69]. Similarly, convergence follows whenever q > K, since then

0 < q2 − qK (Proposition 4.2 in [69]). Finally, for q > 1 equation (5.12) is equivalent to

K < q(q+3)/(q−1), and the right hand side of this equation is bounded from below by

9. Thus for 1 ≤ K < 9 stability also follows. The remaining hypotheses in Theorem 4.3

of [69] can be shown to be equivalent to

K < q(q + 3)/(q − 1), q > 1.
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We summarize the three main global stability results of [69] in the following statement.

Theorem 15 For ρ = 1, the system (5.8) is globally attractive to a unique equilibrium,

provided that 0 < q2 + 3q − Kq + K, q := rb2
Sb3

. In particular, this holds if q < 1, if

q > K or if q > 1 and K < q(q + 3)/(q − 1). Whenever this condition is satisfied,

system (5.8) is stable around this equilibrium.

The stability part of the above theorem is a direct consequence of Theorem 13, after

noting that kX is �-increasing and h is �-decreasing, both of which are straightforward

to check.

Note that the delay τ was almost never used, and indeed can be arbitrarily large or

small. In fact, one can introduce different delays, large or small, in all of the first terms

of the right hand sides of (5.8), and the results will apply with almost no variation. (If

delays are introduced in the second terms, the systems will not be monotone anymore.)

If no delays are assumed, substantially stronger attractivity conditions hold; see [69].

Note that one can associate a second order, scalar discrete system to the original two-

dimensional system for any value of ρ, in the same way as above. One correspondence

that can be easily verified by using equation (5.11) repeatedly is the following: if u0 =

u > 0 and u1 = v > 0, and if u0, u1 and (u, v) are taken as initial conditions of the

systems (5.11) and (5.10) respectively, then u0, u1, u2, . . . generates a two cycle in (5.11)

if and only if (u, v) forms a two cycle in (5.10). Thus there exist nontrivial two-cycles

in (5.10) if and only if there exist nontrivial two cycles in (5.11). For u = 0 or v = 0,

similar comments apply as before. Recall that the existence of nontrivial two-cycles in

(5.10) is equivalent to the global attractivity of system (5.10), by Lemma 15 and the fact

that this system is ≤-decreasing under some orthant cone. By the above arguments,

the same is true for system (5.11). Using the main result, the following proposition

follows:

Proposition 5 The system (5.8) is globally attractive to its equilibrium whenever the

only solution u > 0, v > 0 of the system of equations

u =
βvρ + γuρ

Bvρ + Cuρ
, v =

βuρ + γvρ

Buρ + Cvρ
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is u = v = (β + γ)/(B + C), for

β =
1
b1
, γ =

K

b1

(
Sb3
rb2

)ρ

, B = 1, C =
(
Sb3
rb2

)ρ

.

This is a good point to comment on decomposing the same model as the negative

feedback loop of a monotone system in other ways – after all, one can see that replacing

x3 by “u” in the fourth equation of (5.8), the resulting SISO system is monotone as

well. Indeed, in that way a characteristic k(u) can also be shown to exist, but it can

be expressed only indirectly as the solution of a certain algebraic equation, since a

directed loop remains in the digraph of the controlled system. To check that there

are no nontrivial two-cycles for the discrete system, it is necessary to solve the system

of equations u = k(v), v = k(u), which turns out to be equivalent and very similar

to the system of equations in Proposition 5. Thus, there is more than one way to

decompose autonomous systems as closed loops of monotone controlled systems and

use Theorem 12.

Next we provide sufficient conditions on K, ρ for system (5.8) to be globally attrac-

tive, for any choice of the remaining parameters. We transform k(u, v) = (ζv, ξu/g(v))

into logarithmic coordinates. That is, consider

κ(σ, τ) := ln(k(eσ , eτ )).

The initial condition (σ, τ) of the resulting discrete system is allowed to be an

arbitrary vector in R2. Then

κ(σ, τ) = (∆(τ), σ + c− ∆(τ)), ∆(τ) := ln ζg(eτ ), c := ln ζξ.

Note that the iterations of this function converge globally to an equilibrium if and only

if those of k(u, v) do. To the former system one can associate the second order system

σn+2 = ∆(c+ σn − σn+1) as was done in equation (5.11).

Lemma 21 Consider a discrete system σn+2 = ∆(c+σn−σn+1), where c is an arbitrary

constant and ∆ is a bounded, non-decreasing, Lipschitz function with Lipschitz constant

α < 1/2. Then the system is globally attractive to its unique equilibrium σ = ∆(c).



86

Proof. It is clear that a constant sequence σ−1, σ0, σ1 . . . = σ is a solution of the discrete

system if and only if σ = ∆(c), since σ0 = σ1 implies σ2 = ∆(c+ σ0 − σ1) = ∆(c) and

so on for all n ≥ 2 (the converse direction is evident). Let a0 := inf Range ∆, b0 :=

sup Range ∆. Then it holds that σn ∈ [a0, b0], n ≥ 1, for any initial conditions σ−1, σ0.

Thus for all n ≥ 1,

σn − σn+1 + c ∈ [a0 − b0 + c, b0 − a0 + c],

and by calling a1 := ∆(a0−b0+c), b1 := ∆(b0−a0+c), it follows that σn ∈ [a1, b1], n ≥

3.

Define inductively

ai+1 := ∆(ai − bi + c), bi+1 := ∆(bi − ai + c).

Then for any n ≥ 2i + 1, σn ∈ [ai, bi], by induction on i as above. If one shows that

|bi − ai| tends to 0 as i increases, then the discrete system will be shown to be globally

attractive towards ∆(c), since ai ≤ ∆(c) ≤ bi for all i. Using the Lipschitz condition

on ∆, it holds that

|bi−ai| = |∆(bi−1−ai−1+c) − ∆(ai−1−bi−1+c)| ≤ α |bi−1−ai−1+c−(ai−1−bi−1+c)|

= 2α |bi−1 − ai−1| ≤ . . . ≤ (2α)i |b0 − a0| ,

and the conclusion follows.

In the particular case in question, it follows from the definitions of ∆(x) and g(θ)

that ∆(x) = ln ζ+ln(1+keρx)− ln(1+ eρx). By derivating twice, it is shown that ∆(x)

has a unique inflexion point at x0 = − 1
2ρ ln K, and that

∆′(x0) =
(K − 1)ρ

2(
√
K + 1)

<
1
2
⇔ ρ <

√
K + 1
K − 1

,

and that ρ arbitrary if K = 1. The following corollary follows by the previous lemma

and Theorem 12:

The following corollary follows by using the previous lemma and Theorem 12:

Corollary 8 The lac operon model (5.8) has a unique, globally attractive equilibrium

for any choice of the positive parameters b1, b2, b3, r, S, τ , provided that

ρ <

√
K + 1
K − 1

.
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5.3 Decomposing Autonomous Systems as Negative Feedback Loops

of Monotone Controlled Systems

It will be shown in this section that, under rather general conditions, one can decompose

an autonomous (not necessarily monotone) system into the negative feedback loop of a

monotone controlled system. Sufficient conditions will also be found for the controlled

system to have a well defined characteristic. This appendix is solely concerned with

finite dimensional systems, where the ideas are most simply presented, but a general-

ization to delay systems is straightforward. Consider the controlled system

ẋ = f(x, u), x ∈ X = (R+)n, u ∈ U = (R+)m, (5.13)

and fix a set S ⊆ {1, . . . n}. Any vector (xi)i=1...n defines a vector xS = (xi)i∈S . Letting

z stand for a fixed vector (zi)i∈SC , define the function fS(xS ; z, u) := f(xS , z, u)S ,

where f(xS, z, u) is meant in the obvious sense. This vector field defines a controlled

|S|-dimensional dynamical system

ẋS = fS(xS ; z, u) (5.14)

with n−|S|+m–dimensional control (z, u).

Finally, denote by SC the complement {1,. . . , n} - S of S. If π = {S1, . . . SΛ} is a

partition of {1 . . . n}, then the coupled system

ẋSλ = fSλ(xSλ ;xS
C
λ , u), λ = 1 . . .Λ (5.15)

is equivalent to (5.13).

Sign Definite Systems

Many dynamical systems arising from gene and protein models can be associated with

a signed digraph. Given an autonomous system

ẋ = g(x), x ∈ X = (R+)n, (5.16)

let the variables x1 . . . xn be vertices, and write a positive arc from xi to xj , i 6= j,

if ∂
∂xi
gj(x) ≥ 0 for all x ∈ X and the strict inequality holds at least at some state.
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Similarly, write a negative arc from xi to xj if ∂
∂xi
gj(x) ≤ 0 (with strict inequality

at some state), and no arc if ∂
∂xi
gj(x) ≡ 0. Note that not every system satisfies this

trichotomy for all its variables. The attention will be restricted in this appendix to such

systems, which will be denoted as sign definite.

If the system (5.16) is sign definite with associated digraph G, then one can find an

n-dimensional controlled system

ẋ = f(x, u), x ∈ X = (R+)n, u ∈ U = (R+)m, h : X → U, (5.17)

which is i) monotone with respect to some orthant cones in the inputs and the states; ii)

such that the function h is ≤-decreasing; and iii) such that its closed loop system is well

defined and is (5.16). This will be done as follows, trying to minimize the number of

inputs and outputs involved so as to make the reduced model in Theorem 12 as simple

as possible.

Let A ⊆ {x1, . . . xn} be an arbitrary set of variables, called agonists. These variables

may be unrelated to each other, but it is best (and most meaningful) to choose them

so that their dynamics are positively correlated, i.e. most arrows connecting two nodes

from A are positive. The remaining variables will be referred to as antagonists, and

they will also be thought of as being mostly positively correlated to each other.

An arc in G will be called discordant if it is positive and joins an agonist with an

antagonist, or if it is negative and joins two agonists or two antagonists. Let Dj :=

{xi| there is a discordant arc from xi to xj}, and let

D :=
⋃

j

Dj , m := |D|, U := (R+)m.

Now enumerate the elements of D as xl1 , . . . , xlm . Define fj(x, u) as the result of

replacing in gj(x) all appearances of xli by ui, for each xli ∈ Dj. The controlled system

(5.17) thus defined has a state digraphG′ that can be described as the result of removing

all discordant arcs from G.

Now define the output function h : X → U as

hk(x) := xlk , k = 1 . . . p,
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and close the loop by letting u(t) = h(x(t)). Let

s(i) :=





1 if xi ∈ A

−1 if xi 6∈ A,

and let KX be the orthant cone induced by s. Let pk := −slk , k = 1 . . . m, and let KU

be the orthant cone defined by p.

Example

Equation (5.8) and Figure 5.3 form a good example of these definitions. In this model,

one can consider as agonists the variables x1, x3 and as antagonists x2, x4. There are

only two discordant arcs and it holds that D1 = {x4}, D2 = {x1}, D3 = D4 = ∅; thus

D = {x1, x4}. The variables x1 and x4 are replaced by u and v in the functions g2, g1

to form the functions f2(x, u), f1(x, v), respectively.

An important consideration in making the choice of the agonist set is to minimize

the number of inputs. See Figure 5.4 for an example of a system in which the agonist

set is chosen in two different ways.

+ |

|

| +

|

+
+

+

| +

b

a

a

a a

b

|

|

| +

|

+

+

| +

a

aa

b

bb

b +b

+

Figure 5.4: Network Splitting. The nodes in the digraphs above have been labeled “a”
for agonist and “b” for antagonist in two different ways, and the discordant arrows
have been circled in each case. The nodes at the base of these arrows will form the set
D of inputs of the controlled system (four inputs in the first digraph, and two in the
second). Note that by choosing the agonists and antagonists in an educated way one
can substantially reduce the number of inputs.

Before providing our construction leading to i),ii),iii), the following simple result is

stated and proved for convenience. Given a digraph H, we denote by V (H) the set of

vertices of H, and by A(H) the set of arcs of H.
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Lemma 22 Let H be an acyclic digraph. Then there exists a bijection b : V (H) →

{1, . . . |V (H)|} such that (v1, v2) ∈ A(H) implies b(v1) < b(v2).

Proof. The proof proceeds by induction on the number of vertices. If there is only one

vertex, the bijection is trivial. Assuming the statement true for graphs of at most n

vertices, let H have n+ 1 vertices. There exists at least one vertex v with no incoming

arcs. Remove it and apply the statement on the remaining digraph H ′ to form a

bijection b : V (H ′) → {2, . . . n+ 1}. Finally, define b(v) := 1. The result follows.

Theorem 16 The controlled system (5.17) described above is monotone, and h is a

≤-decreasing function. The closed loop system of (5.17) is well defined and equal to

system (5.16). Furthermore, if for each strongly connected component of G′ with vertices

S ⊆ {1 . . . n} the system (5.14) has a well defined I/S characteristic, then (5.17) allows

an I/S characteristic.

Proof. The Kamke monotonicity criterion for controlled systems will be used: given or-

thant cones KX and KU generated by the tuples (s1, . . . sn) and (p1, . . . pm) respectively,

a system (5.17) is monotone with respect to these cones if and only if

sjsi
∂fj
∂xi

≥ 0, ∀i 6= j and sjpk
∂fj
∂uk

≥ 0, ∀i, k, (5.18)

where i, j = 1 . . . n and k = 1 . . . m; see [101, 6]. To prove the first assertion in 5.18,

let i 6= j be such that there is an arc from xi to xj in G′ (otherwise there is nothing

to prove). Then either both variables are agonists and the arc is positive, or both are

antagonists and the arc is also positive, or else one is agonist, one is antagonist and the

arc is negative. In all these cases, the first statement in (5.18) is satisfied. As to the

second statement, if k, j are such that ∂fj/∂uk 6≡ 0, then by construction the arc from

xlk to xj in G is discordant, so that slksj∂gj/∂xlk ≤ 0. Also by construction,

sign
∂gj
∂xi

= sign
∂fj
∂uk

.

Therefore sjpk∂fj/∂uk ≥ 0 as expected.

Recall that pk = −slk , hk(x) = xlk to see that h is ≤-decreasing. Replacing each

uk in fj(x, u) back with hk(x) = xlk will form back gj(x). This proves that the closed

loop system is the same as (5.16).
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For the last assertion write (5.17) as a cascade of controlled monotone systems on the

state spaces Xλ := (R+)|Sλ|, λ = 1 . . .Λ, where S1, . . . , SΛ are the strongly connected

components (s.c.c.) of G′. Let H be the acyclic digraph with vertices S1 . . . DΛ which is

naturally induced by the digraph G′, i.e. (Sλ, Sµ) ∈ A(H) if and only if (x, y) ∈ A(G′)

for some x ∈ Sλ, y ∈ Sµ. Now use Lemma 22 to relabel the s.c.c’s in such a way that if

xi ∈ Sλ1 , xj ∈ Sλ2 , and there is an arc from xi to xj , then λ1 ≤ λ2.

Consider the function fS1(xS1 ; z, u), where z = (zi)i∈SC
1

is given. By the choice of

S1, it holds that fS1 doesn’t actually depend on z, and it can be written as fS1(xS1 , u).

Similarly one can write fSλ(xSλ ;xS
C
λ , u) in (5.15) as

fSλ(xSλ ; xS1 , . . . xSλ−1 , u),

and thus system (5.17) is written as a cascade as desired, using equation (5.15).

Given a fixed input u ∈ U , the system ẋS1 = fS1(xS1 ;u) converges globally towards

a vector (x̄i)i∈S1 , by hypothesis. Using u1, . . . um and the variables in S1 as inputs, the

system

ẋS2 = fS2(xS2 ;xS1 , u)

can be seen to satisfy (5.18), since some of the variables have now been simply relabeled

as inputs. Also, this system has a well-defined characteristic by hypothesis. Thus the

property CICS holds, and since (xS1 , u) converges to (x̄S1 , u), then xS2 converges to

x̄S2 . The same argument holds to show that all the cascade converges, thus proving

that system (5.17) has an I/S characteristic.

Corollary 9 If the digraph G′ associated to system (5.17) is acyclic, and for every

i = 1 . . . n the 1-dimensional system

ẋi = gi(x̂1, . . . , x̂i−1, xi, x̂i+1, . . . , x̂n),

with controls x̂j , j 6= i, has a well defined I/S characteristic, then (5.17) allows an I/S

characteristic.

Proof. The graph G′ is acyclic, therefore its strongly connected components are exactly

the singletons {1}, . . . , {n}. By the previous theorem, the result follows.
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Discussion

The reader will notice a tradeoff in the number of variables chosen to form the input: the

more variables are included in D, the more complex is the resulting discrete system in

SGT, but the less connected is G′ and the easier to show the existence of a characteristic.

Note that D is completely determined by the set A of agonists, which is arbitrary and

allows for some choice. The results in this section make SGT robust to possible changes

in the model. If a new participating gene is discovered as part of a gene network, one

can simply keep the previous agonists, introduce the new gene either as agonist or

antagonist, and obtain a monotone system (5.17) that has a similar topology as the

previous one. The second condition in Theorem 16, regarding the existence of the

characteristic, also needs to be checked only locally if a new node or a new arrow is

introduced.
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Chapter 6

Multistability and the Reduced Model

6.1 Quasimonotone Matrices, Revisited

We begin this discussion with some results on the leading eigenvalue of a quasimonotone

matrix. This section therefore builds on the general results of Chapter 3. Although the

present chapter is concerned exclusively with finite-dimensional systems, the results of

this section hold through for abstract Banach spaces after replacing matrices by suitable

linear operators.

We assume throughout that A is an n× n matrix, and that K ⊆ Rn is an arbitrary

closed cone.

Lemma 23 Let A be quasimonotone with respect to K. Then

leig(A) = max{λ ∈ R | there exists v > 0 such that Av ≥ λv}.

Proof. Let S = {λ ∈ R | there exists v > 0 such that Av ≥ λv}, and let λ̄ = leig(A).

Consider first a given real number λ ≤ λ̄. By the Perron-Frobenius theorem for qua-

simonotone matrices there exists a vector v0 > 0 such that Av0 = λ̄v0. Since clearly

λ̄v0 ≥ λv0, it holds that λ ∈ S. Thus sup(S) ≥ λ̄.

Now let λ > λ̄, and suppose by contradiction that λ ∈ S. Then B = A − λI is a

Hurwitz, quasimonotone matrix. By hypothesis, Bv = Av − λv ≥ 0 for some v > 0.

Consider the system ẋ = Bx. Since Bv ≥ 0, the set v+K = {v+x|x ∈ K} is positively

invariant (see Smith [101]). But since all solutions converge towards zero, it must hold

that 0 ∈ v + K = v + K. Hence −v > 0, which is a contradiction. One concludes that

λ 6∈ S, so that S = (−∞, λ̄] and the statement of the lemma follows.
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Lemma 24 Let A be a quasimonotone matrix with respect to K, α ∈ R an arbitrary

real number, and B a monotone matrix with respect to K. Then A + B, A + αI are

quasimonotone, leig(A+B) ≥ leig(A), and leig(A+ αI) = leig(A) + α.

Proof. To prove that A + B is quasimonotone, we use the Vidyasagar condition for

quasimonotonicity — see Chapter 3. Let φ ∈ K∗, and let x > 0 be such that φ(x) = 0.

By quasimonotonicity of A, the Vidyasagar condition implies that φ(Ax) ≥ 0. But

therefore also φ((A + B)x) = φ(Ax) + φ(Bx) ≥ 0. This constitutes the Vidyasagar

condition for the quasimonotonicity of A + B as expected. The fact that A + αI is

quasimonotone is proven similarly.

Let λ ∈ R be such that Av ≥ λv for some v > 0. Then obviously (A+B)v ≥ λv. It

holds that SA ⊆ SA+B (using the notation for S above), so that leig(A) ≤ leig(A+B)

by the previous lemma. The last statement of the lemma follows from the fact that the

spectra of A and A+ αI are related by σ(A+ αI) = σ(A) + α.

The next lemma will also be used in the main results below. The additional strong

quasimonotonicity hypothesis on A allows for the stronger conclusion.

Lemma 25 Let A be strongly quasimonotone with respect to K, and let B be a monotone

matrix with respect to K, B 6= 0. Then leig(A+B) > leig(A).

Proof. Consider a the time t evolution operators T1(t), T2(t) : X → X associated with

A and A+ B respectively. Both T1 and T2 are strongly monotone, by hypothesis. By

Lemma 5, T1 ≤ T2 on the set K. Moreover, since there exists x0 > 0 such that Bx0 > 0,

it follows that T1(x0) < T2(x0. By Theorem 1.3.28 and Corollary 1.3.29 of Berman and

Plemmons [10], it holds that ρ(T1) < ρ(T2). By the spectral mapping theorem, it holds

that ρ(T1) = exp(tleig(A)), ρ(T2) = exp(t leig(A+B)). The result thus follows.

The following lemma will be useful below. It has implicity been already put to use

in the abstract case for the proof of Theorem 7.

Lemma 26 Let A be Hurwitz and quasimonotone with respect to K. Then −A−1 is

monotone with respect to K.
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Proof. Let T (t) be the time t evolution operator of the system ẋ = Ax, that is, T (t) =

exp(tA). The equalities

−I =
∫ ∞

0

d
dt
T (t) dt = A

∫ ∞

0
T (t) dt

show that −A−1 =
∫ ∞
0 T (t) dt, and that in particular −A−1 is monotone.

We now introduce a new definition, which will be useful in the proof of the main

results. Refer to [10] for a more thorough treatment (and where these matrices are

called K-monotone).

Definition 8 The matrix A is called inverse-positive with respect to K if it satisfies

the property Ax ≥ 0 ⇒ x ≥ 0, ∀x ∈ Rn.

We first note that an inverse-positive matrix A must be invertible: if Ax = 0, then

also A(−x) = 0, which implies x ∈ K, −x ∈ K, and x = 0. Also, it is easy to see that

A−1K ⊆ K, and that these two conditions imply inverse-positivity.

We quote the following result without proof from Plemmons [10], pp 113. (That

reference also calls inverse positive matrices K-monotone.)

Lemma 27 Let A = αI −B, α > 0, and assume B

K ⊆ K. The following conditions:

1. A is inverse-positive.

2. ρ(B) < α

3. −A is Hurwitz

are equivalent.

The following result is from [10], p. 10. We include here a simple proof for the

reader’s convenience.

Lemma 28 Let A = αI −B, α > 0, B

K ⊆ K, and suppose that A is invertible and Ax > 0 for some x � 0. Then A is

inverse-positive.
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Proof. Recall that for any norm |·| on Rn, and any n×nmatrix M , we have ρ(M) ≤ |M |,

where |M | is the usual induced operator norm. For any fixed x as in the statement of

the Lemma, we define a norm |·|x on Rn as follows:

|y|x = inf{t > 0| − tx ≤ y ≤ tx} .

Using B

K ⊆ K, we prove next that |B|x = |Bx|x, where the left-hand side indicates the induced

operator norm. Trivially |B|x ≥ |Bx|x, and if |y|x = 1, the condition −tx ≤ Bx ≤ tx

implies

tx−By = tx−Bx+B(x− y) ≥ 0

tx+By = tx−Bx+B(y + x) ≥ 0 ,

and hence |By|x ≤ |Bx|x.

Further, it is easy to see that 0 ≤ y1 ≤ y2 implies |y1|x ≤ |y2|x. In particular,

Ax = αx−Bx ≥ 0 implies |Bx|x ≤ |αx|x.

Putting all together we have

ρ(B) ≤ |B|x = |Bx|x ≤ α |x|x = α .

But if ρ(B) = α, then 0 would be an eigenvalue of A, which would contradict our

hypotheses. Thus ρ(B) < α, and by the previous lemma the result follows.

6.2 The Reduced System

Consider a C1 dynamical system

ẋ = f(x, u), u = h(x) (6.1)

defined on the input and state spaces U ⊆ Rm, X ⊆ Rn. Assume that X (U) is the

closure of open sets in Rn (Rm), and let KX ⊆ Rn, KU ⊆ Rm be the cones with respect

to which the system is monotone. In contrast with the previous chapters, in this chapter

we will assume that h is a positive feedback function, that is, x ≤ y implies h(x) ≤ h(y)

(or, using our notation, h is ≤-increasing). In particular, the closed loop system
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ẋ = f(x, h(x)) (6.2)

can be shown to be monotone [7]. We prove this using the Vidyasagar condition from

Chapter 3: let x ≤ y and σ ∈ K∗
X be such that σ(x) = σ(y). Using the Vidyasagar

condition on the quasimonotone function f(·, h(x)) we conclude that

σ(f(x, h(x))) ≤ σ(f(y, h(x))) ≤ σ(f(y, h(y))),

the last inequality holding since f(y, h(·)) is increasing.

Corollary 10 The closed loop of a controlled monotone system under a positive feed-

back function is monotone with respect to KX .

Consider the set function KX : U → P(X) defined by

KX(u) = {x ∈ X | f(x, u) = 0}.

For each fixed u ∈ U , and in the particular case that (6.1) is strongly monotone, Hirsch’s

theorem implies that almost all bounded solutions of ẋ = f(x, u) converge towards the

set KX(u). In this way the present setup generalizes the concept of characteristic

proposed in Chapter 4. The idea of generalizing characteristic functions as set char-

acteristics was also used by de Leenheer et al. [23] for a similar setup in the negative

feedback case. In the case that K is a single-valued function, and if it holds that i)

det fx(K(u), u) 6= 0 for every u, and ii) for every fixed point ū of K, det(K ′(ū)−I) 6= 0,

we say that K is a strong characteristic; this definition corresponds to that of a ‘char-

acteristic’ in [31].

The equilibria of the closed loop system (6.2) are in bijective correspondence with

the intersection between graph KX and the transpose of graph h. We state this in the

following lemma, whose proof should be self-evident.

Lemma 29 Given a controlled system (6.1), a state x ∈ X is an equilibrium of (6.2)

if and only if x ∈ KX(h(x)). The function x → (h(x), x) is a bijective correspondence

between equilibria of (6.2) and points (u, x) such that x ∈ KX(u), u = h(x).
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Given the function KX above, consider the set function K : U → P(U), defined by

K(u) = {h(x) |x ∈ KX(u)}. The following lemma relates to K as Lemma 29 relates to

KX . We will say that the system has property (H) if

(H) For every x1, x2 ∈ E, x1 6= x2, it holds that h(x1) 6= h(x2).

Lemma 30 Let condition (H) be satisfied. Then the function x → h(x) forms a bi-

jective correspondence between the equilibria of (6.2) and the points u ∈ U such that

u ∈ K(u).

Proof. By Lemma 29 an equilibrium of (6.2) satisfies x ∈ KX(h(x)). Therefore such

an equilibrium satisfies h(x) ∈ K(h(x)), by definition. If u ∈ K(u), then there is

x ∈ KX(u) such that h(x) = u. Therefore x ∈ KX(h(x)), that is, x is an equilibrium

of (6.2) by Lemma 29. The injectivity of the correspondence is guaranteed by the

assumption in the statement.

Note that if KX is a strong characteristic, then the assumption of this lemma is

satisfied automatically, since h(x1) = h(x2) implies x1 = KX(h(x1)) = KX(h(x2)) =

x2.

Consider now an equilibrium point x̄ ∈ KX(h(x̄)) of (6.2). Let

ẋ = Ax+Bu, y = Cx (6.3)

be the linearization of (6.1) around (ū, x̄), ū = h(x̄). Let kX : S → X be a C1 function

defined on an open neighborhood of ū, and such that f(kX(u), u) = 0 for all u ∈ S

(thus kX can be thought of as a ‘branch’ of KX). From this equation one can find

the derivative (kX)′(ū) by using the chain rule, namely (kX)′(ū) = −A−1B. Then

the C1 function k : S → U given by k(u) = h(kX(u)) is such that k(ū) = ū and

k′(ū) = −CA−1B. The input value ū is also an equilibrium of the dynamical system

u̇ = k(u) − u. (6.4)

This system is defined as the reduced system associated to (6.1) at x̄. It is important to

note that this system is only locally defined (unless k is single-valued) and only whenever
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kX is a uniquely defined function in a neighborhood of ū. We will show presently that

the latter is the case if A is a Hurwitz matrix. The linearization of system (6.4) around

ū is associated with the matrix Red(x̄) := −CA−1B − I. In the following section we

will study the relationship between this matrix and the matrix A + BC, which is the

linearization of (6.2) at x̄.

6.3 Results for Linear Systems

Consider a controlled monotone system (6.1). Given u0 ∈ U, x0 ∈ X, let A(u0, x0) =

fx(u0, x0), B(u0, x0) = fu(u0, x0), and C(x0) = hx(x0). We will refer to these matrices

as A,B,C if the point (u0, x0) is clear from the context. Thus the linearization of (6.1)

around (u0, x0) has the form (6.3). By linearizing at equilibrium points, we will derive

information about the stability of the closed loop system (6.2) by looking at the matrix

−CA−1B − I.

We begin by stating and proving a theorem which relates the stability properties of

the matrices A+BC and −CA−1B− I, given a Hurwitz monotone linear system (6.3).

Theorem 17 Let (6.3) be a monotone controlled system with respect to the cones

KX , KU on X,U respectively, and such that A is a Hurwitz matrix. Assume that

det
(
I + CA−1B

)
6= 0. Then A+BC is exponentially stable (exponentially unstable) if

and only if −(I + CA−1B) is exponentially stable (exponentially unstable).

Proof.

Recall from Chapter 4 that the monotonicity of the linear controlled system (6.3)

is equivalent to the following conditions:

1. the positivity cone KX is positively invariant for the system ẋ = Ax,

2. BKU ⊆ KX , and

3. CKX ⊆ KY .

It holds that −CA−1B is a monotone matrix, since it can be written as the product

C(−A−1)B of monotone matrices (by Lemma 26). This implies in particular that
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−(I + CA−1B) is a quasimonotone matrix, by Lemma 24. The fact that A + BC is

also quasimonotone follows similarly. We define λ := leig(A+BC) and µ := leig− (I +

CA−1B). We must therefore prove that

λ < 0 ↔ µ < 0, λ > 0 ↔ µ > 0.

Let v > 0 be such that (A + BC)v = λv. By multiplying on both sides by CA−1

we obtain : (I + CA−1B)Cv = λCA−1v. We prove that λ 6= 0: if λ were zero, then

det
(
I + CA−1B

)
6= 0 would imply Cv = 0 and Av = (A+BC)v = 0, contradicting the

fact that A is a Hurwitz matrix. Note also that Cv ≥ 0 and CA−1v = −
∫ ∞
0 CeAtv dt ≤

0 .

Suppose first that Cv � 0, and that therefore CeAtv � 0 on [0, δ] for some small

δ > 0. Since the convex hull of {CeAt | 0 ≤ t ≤ δ} is in the interior of the open convex

set int KX , it follows that
∫ δ
0 Ce

Atv dt� 0. Therefore

CA−1v = −
∫ δ

0
CeAtv dt−

∫ ∞

δ
CeAtv dt� 0.

If λ < 0, we can apply Lemma 28 (with “α” = 1, “B” = −CA−1B, “A” = I+CA−1B,

and “x” = Cv) to conclude that I + CA−1B is inverse-positive, and therefore, by

Lemma 27, that −
(
I + CA−1B

)
is Hurwitz, that is, µ < 0.

Conversely, if −
(
I + CA−1B

)
is Hurwitz, then, once again appealing to Lemma 27,

we know that I + CA−1B is inverse-positive. Then, from (I + CA−1B)(−λ−1)Cv =

−CA−1v, we conclude that (−λ−1)Cv > 0 or λ < 0.

Now let us consider the general case, Cv ≥ 0. We show the existence of an m× n

matrix P with Px � 0 for each x > 0: since KX is closed and pointed, there must

be some (n − 1)–dimensional hyperplane H ⊆ Rn whose intersection with KX is {0}.

Letting w ∈ Rn have norm equal to 1 and be perpendicular to H, we have without loss

of generality x · w > 0, for every x > 0. Let now B be a basis of Rn consisting of an

orthonormal basis of H, together with w. Then B itself is orthonormal.

We can define a linear transformation P : Rn → Rm by freely defining the value of

P at each of the elements of B, and we do so by setting P (w) � 0 and P (b) = 0 for all

other b ∈ B. Given x > 0, one can write x as linear combination of the base elements,
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and the coefficient associated with each b ∈ B is b · x. Since P (b) = 0 except for b = w,

our assertion follows from

P (x) = P ((x · w)w) = (x · w)P (w) � 0.

Let now Cε=C+εP , for ε>0 small enough so that det
(
I + CεA

−1B
)
6= 0. Thus we

can repeat the procedure above with this new matrix, and we have, for λε, µε denoting

the stability modulus of A + BCε and −(I + CεA
−1B) respectively, that λε < 0 if

and only if µε < 0. By continuity of eigenvalues on both sides of the equivalence

under continuous changes in matrix entries, the result follows, taking into account that

λ 6= 0, µ 6= 0.

Finally, since λ 6= 0, µ 6= 0, and λ < 0 iff µ < 0, it must hold that λ > 0 iff µ > 0.

Observe that a regularity condition in the hypotheses of the Theorem above is that

det(I + CA−1B) 6= 0. We proceed to prove that detA+BC 6= 0 could be used just as

well.

Lemma 31 Consider matrices A ∈ Mn×n, B ∈ Mn×m, C ∈Mm×n, and assume that

A is nonsingular. Then A+BC is nonsingular if and only if CA−1B+I is nonsingular.

Proof. The proof that CA−1B+ I is nonsingular implies A+BC is nonsingular can be

derived from the proof of the theorem above. To prove the opposite direction, suppose

that det−CA−1B − I = 0. Let v 6= 0 be such that −CA−1Bv − v = 0. Multiply by

B from the left, and let w = A−1Bv. After simplifying we have (A + BC)w = 0. If

A+BC were nonsingular, it would follow that w = 0, which implies that Bv = 0. But

from this follows that −v = 0 in the first equation, which is a contradiction.

The following corollary incorporates this information into Theorem 17 in order to

eliminate some of the hypotheses in the applications.

Corollary 11 Consider a arbitrary linear monotone controlled system (6.3. Then A+

BC is Hurwitz if and only if A is Hurwitz and −CA−1B − I is Hurwitz.

Proof. Let A+BC be Hurwitz, so that A is Hurwitz by Lemma 24. Then −CA−1B−I

is nonsingular by Lemma 31, and therefore Hurwitz by Theorem 17. Conversely, let
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A and −CA−1B − I be Hurwitz. Then in particular −CA−1B − I is nonsingular. By

Theorem 17 once again, A+BC is Hurwitz. ]

The following theorem relaxes the nonsingularity condition altogether, and imposes

a strong monotonicity condition instead.

Theorem 18 Let (6.3) be a monotone controlled system, and let A be Hurwitz. If

A+BC and −CA−1B − I are strongly quasimonotone, then

sign leig(A+BC) = sign leig(−CA−1B − I).

Proof. It remains only to consider the case det−CA−1B − I = 0, or equivalently,

detA+BC = 0. Define λ := leigA+BC and µ := leig−CA−1B − I, and note that in

particular λ ≥ 0, µ ≥ 0. We show that λ > 0 if and only if µ > 0, which will complete

the result.

Suppose first that µ > 0. The key observation is that if λ = 0, then there exists

a unique vector σ � 0 (modulo multiplication by constant) such that (A + BC)σ =

0, by strong quasimonotonicity and the Perron-Frobenius theorem for quasimonotone

matrices. Let τ 6= 0 be such that −CA−1Bτ − τ = 0. Multiply by B from the left, and

let w be such that Aw = Bτ . After simplifying, it holds that −BCw−Aw = 0, or

(A+BC)w = 0. (6.5)

Note that Bτ 6= 0, since otherwise 0 = −CA−1Bτ − τ = −τ . Therefore also w 6= 0.

If it were true that λ = 0, then by our observation above, w = ασ, α 6= 0. Now, after

multiplying (6.5) from the left by CA−1 and canceling, we get

(−I − CA−1B)Cσ = 0, Cu > 0,

which is a contradiction, since by the Perron-Frobenius theorem for q.m. matrices the

only eigenvalue of −I − CA−1B that can have positive eigenvectors is µ 6= 0. Thus

λ > 0.

Conversely, let λ > 0, and assume by contradiction µ = 0. Let σ � 0 be such that

−CA−1Bσ − σ = 0. (6.6)
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Let τ be such that Bσ = Aτ . Note that since σ � 0, it holds that Bσ > 0, and

therefore τ 6= 0. In the same fashion as above, we have (A +BC)τ = 0. Now, since A

is quasimonotone and Hurwitz, it holds that for any x > 0,

A−1x = −
∫ ∞

0
etA x dt < 0,

see for instance [31], in the proof of Theorem 2. Therefore τ = A−1Bu < 0. The

fact that −τ > 0 is an eigenvector of the eigenvalue 0 6= λ of A + BC violates the

Perron-Frobenius theorem, by strong quasimonotonicity.

We say that an autonomous system

ẋ = g(x) (6.7)

is an orthant monotone system if it is monotone with respect to an orthant cone K ⊆

Rn. In the following result we prove that in orthant monotone systems, the strong

quasimonotonicity of −CA−1B−I is guaranteed by that of A+BC. This will eliminate

an important assumption in the main results.

Theorem 19 Consider a Hurwitz linear system (6.3) which is orthant monotone. As-

sume that all the columns of B, and all the rows of C, are nonzero. If A + BC is

strongly quasimonotone, then −CA−1B − I is strongly quasimonotone.

Proof. Recall that by stability Pv := −A−1v =
∫ ∞
0 T (t)v dt, v ∈ Rn, where T (t) is

the time t evolution operator of the system ẋ = Ax. Consider the graph G of the

closed loop matrix A+BC, and the subgraph G′ of the matrix A. If there is a directed

path in G′ from the variable xk to xl, then the l-th component of T (t)ek becomes (and

remains) nonzero for t > 0; see Theorem 4 of [6] for a more complete discussion. That

is, el ·
∫ ∞
0 T (t)ek dt 6= 0, or plk 6= 0. One can similarly verify the opposite statement,

that is, if pkl = 0, then there is no directed path from xk to xl.

Define for any input variable ui the sets R(ui) := {xk | [B]ki 6= 0}, S(ui) :=

{xl | [C]il 6= 0}. By the assumptions in the statement, these sets are nonempty for

every ui.

We have that
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[−CA−1B]ij = [CPB]ij =
∑

k,l=1...n

cilplkbkj, (6.8)

where i 6= j, b∗ = [B]∗, c∗ = [C]∗, p∗ = [P ]∗. By monotonicity, τiτjcilplkbkj ≥ 0 for each

k, l (otherwise one could arrive to a contradiction by deleting all remaining entries in

the i-th row of C and j-th column of B). Therefore, [−CA−1B]ij 6= 0 if and only if

there exist k, l such that cil 6= 0, plk 6= 0, bkj 6= 0. From the discussion above, it follows

that [−CA−1B]ij 6= 0 if and only if there exist xk ∈ R(ui) and xl ∈ S(uj) such that

there is a directed path from xk to xl.

Observe that if an edge (xk, xl) is in G but not in G′, then necessarily [BC]lk 6= 0.

This is because in that case [A]lk = 0 but [A+ BC]lk 6= 0. Therefore there must exist

i such that bli 6= 0, cik 6= 0, in other words xl ∈ R(ui), xk ∈ S(ui).

Now consider two fixed inputs nodes ui, uj , i 6= j. To prove strong quasimonotonicity

we find as follows a sequence ui = uh1 , . . . , uhN
= uj , such that [−CA−1B]hλhλ+1

6= 0,

λ = 1 . . . N − 1. Let xk ∈ R(ui), xl ∈ S(uj), and consider a directed path in G from xk

to xl. For every edge (xfλ
, xgλ

) that is on this path but not in G′, let hλ be such that

xgλ
∈ R(uhλ

), xfλ
∈ S(uhλ

). The uh1 . . . uhN
satisfy the required criteria.

Observe that if one of the columns of B (or one of the rows of C) is zero, then

CA−1B may not be strongly quasimonotone, and neither can −CA−1B − I.

For the sake of completeness, the following proposition is stated and proved, which

gives sufficient conditions for the equivalence of the strong quasimonotonicity for A+BC

and −CA−1B. The definitions of partial transparency and partial excitability are given

in Section 10.1

Proposition 6 Consider a Hurwitz linear system (6.3) which is monotone with re-

spect to some orthant cones in Rn, Rm. Assume further that the system is partially

excitable and partially transparent. Then A+BC is strongly quasimonotone if and only

if −CA−1B − I is strongly quasimonotone.

Proof. Following up on the proof of Lemma 19, note that if for some variables xk, xl

and ui it holds that xl ∈ R(ui), xk ∈ S(ui), then necessarily [BC]lk 6= 0 by definition,

and therefore (xk, xl) is an arc in G.
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The assumptions of partial excitability and partial transparency (other than im-

plying the remaining hypotheses in the previous result) allow us to assume the fol-

lowing statement: for every xl, there exist ui and xk ∈ R(ui) (xk ∈ S(ui)) such that

there is a path on G′ from xk to xl (from xl to xk). Assume that −CA−1B − I is

strongly quasimonotone. Given any xk, xl, k 6= l, find a path from xk to x2k ∈ S(ui)

and from x2l ∈ R(uj) to xl. Find a sequence ui = uh1 , . . . , uhN
= uj , such that

[−CA−1B]hλhλ+1
6= 0, λ = 1 . . . N − 1, and use the equivalence after equation (6.8) and

the paragraph above to find a directed path from xk to xl.

6.4 The Main Results

Recall that N is the class of all matrices whose set of eigenvalues is contained in

the closed left half of the complex plane. Given an autonomous dynamical system, Es

denotes the set of equilibria e such that the linearization of the system around e is in N .

Also recall that we use the terms ‘Hurwitz’ and ‘exponentially stable’ interchangeably.

We denote the set of x ∈ X with bounded orbit in (6.2) as B. A state x ∈ X is called

reducible if either BC = 0 or A+BC is not strongly quasimonotone.

Consider a monotone controlled system (6.1), and the set function KX defined

in Section 6.2. The following proposition will help determine when an equilibrium

x ∈ KX(h(x)) is stable or exponentially unstable in the closed loop.

Proposition 7 Let p = (u0, x0) ∈ U ×X, and let f in system (6.1) be a C1 function.

Then the following statements hold:

1. If x0 is a limit point of KX(u0), then detA(p) = 0.

2. If A(p) is Hurwitz, then there exists a C1 function kX : S → X defined on an open

neighborhood S of u0 such that f(kX(u), u) = 0 on S. This function is unique

except for extensions or restrictions of the domain S.

3. If the point p is non-reducible, and if all solutions of ẋ = f(x, u0) converge towards

x0, then A(p) is Hurwitz.
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Proof. Since f is C1, it can by definition be extended to an open set containing U ×X.

Suppose first that x0 is a limit point of KX(u0). If detA(p) 6= 0, then by the inverse

function theorem the function f(·, u0) would be injective in a neighborhood of p, which

is a contradiction. This proves the first assertion.

The second assertion is a direct consequence of the implicit function theorem: since

A(p) is Hurwitz, then in particular detA(p) 6= 0. Thus there exist open neighborhoods

S ⊆ Rm, T ⊆ Rn of u0, x0 respectively, and a C1 function kX : S → T such that

graph kX = (S × T ) ∩ graph KX .

This implies the second statement of the Proposition.

To prove the third statement, note that by the convergence hypothesis it must

hold leigA + BC ≤ 0. Let ε > 0 be small enough that A + (1 − ε)BC is strongly

quasimonotone. (In finite dimensions, the strong quasimonotonicity of a matrix M is

determined by the strong monotonicity of eMt for any t > 0. This in turn is determined

by whether the image of {x > 0 | |x| = 1} under eMt is contained in int K. Thus if M

is strongly quasimonotone, a sufficiently small perturbation of its entries preserves this

property.) Then by Lemma 25,

leigA ≤ leigA+ (1 − ε)BC < leigA+BC ≤ 0,

and the conclusion follows. See also the proof of Theorem 20.

Note that in the proof above one can conclude without loss of generality that

A(kX(u)) is Hurwitz, for each u ∈ S. This assertion follows after possibly restrict-

ing the domain of definition of kX so that A(u, k(u)) is Hurwitz for all u ∈ Dom k,

which is possible by continuity of the eigenvalues. Such a function can be referred to

as a stable branch of the function KX .

Example Consider the system




ẋ = uy − x

ẏ = x− y,
x, y ≥ 0, u ≥ 0. (6.9)
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1 u

K(u)

Figure 6.1: The function K(u) for the system (6.9).

For u < 1 (u > 1), this system has a unique equilibrium at the origin, which is

Hurwitz (exponentially unstable). Therefore KX(u) = {0} for such u. But KX(1) =

{(x, x) |x ∈ R}. If we set h(x, y) = x, we can draw the set function K as in Figure 6.1.

Note that condition (H) is not satisfied in this example, since for instance the vectors

(1, 0) and (1, 1) are equilibria with the same output value. There are two points u such

that u ∈ K(u): u = 0, associated to the (reducible) equilibrium (x, y) = (0, 0), and

u = 1, associated to the (non-reducible) equilibria (1, y), y arbitrary.

Assume that the set of equilibria of the strongly monotone closed loop system (6.2)

is countable. By Hirsch’s theorem, almost all bounded solutions converge towards some

point in E. We are now able to state the main result, which discriminates among the

equilibrium points those that are stable from those that are exponentially unstable.

Not surprisingly, all Hurwitz points turn out to be on stable branches, but even here

stability is not guaranteed.

Theorem 20 Consider a system (6.1) which is monotone with respect to an orthant

cone, and whose closed loop (6.2) is strongly monotone. Assume that the set of equilibria

of (6.2) is countable. Then almost all bounded solutions of (6.2) converge towards those

equilibrium points x0 ∈ E that are either reducible (if any), or such that A(h(x0), x0)

is Hurwitz and −CA−1B − I is in N .

Proof. As mentioned above, Hirsch’s theorem [49] guarantees that almost all states

x ∈ X with bounded orbit satisfy ω(x) ⊆ E. Since any such omega limit set is nonempty

and connected, and E is countable, it follows that w(x) is a singleton for almost every
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x ∈ X with bounded orbit. That is, the solution of almost every x ∈ B converges

towards some equilibrium point x0 ∈ E. Furthermore, By Corollary 4.5 in [48] (which

uses the enumerability of E), almost every x ∈ B has a solution which converges towards

an equilibrium x0 ∈ Es.

Consider an equilibrium x0 of the closed loop (6.2), and the linearization (6.3) of the

open loop system around p = (h(x0), x0). The linearization of the closed loop around

this point has the form

ẋ = (A+BC)x. (6.10)

We observe first that if A(p) is exponentially unstable, then A+BC is itself exponen-

tially unstable by Lemma 25. By the Perron Frobenius theorem, the leading eigenvalue

of A(p) is real and positive, and by Lemma 24 the leading eigenvalue of A+BC is also

positive.

Now, let x0 be non-reducible and such that leig(A(p)) = 0. We cannot directly

apply Lemma 25, since A is not necessarily strongly quasimonotone. But we know that

A + BC is strongly quasimonotone. Therefore there must exist a small number ε > 0

such that A + (1 − ε)BC is strongly quasimonotone. By Lemma 24, 0 = leig(A) ≤

leig(A + (1 − ε)BC). Since also εBC > 0, we apply Lemma 25 to conclude that

leig(A + BC) > 0. Thus this equilibrium is also exponentially unstable. This shows

how the exponential stability of A(p) is a necessary condition for a non-reducible point

p to have a closed loop linearization in N .

Finally, let A(p) be a Hurwitz matrix and let p be non-reducible. By Theorem 19,

and using the assumption that the monotonicity is with respect to orthant cones, we

conclude that A+BC is in N (Hurwitz) if and only if −CA−1B− I is in N (Hurwitz).

This completes the result.

Note that the non-reducible points x0 such that A is Hurwitz and −CA−1B − I

is Hurwitz are guaranteed to have a basin of attraction with nonempty interior. Con-

versely, note that if x0 is reducible, then it only potentially has a nontrivial basin. For

instance, if A is exponentially unstable for this point, then A+BC is also exponentially

unstable and the basin has measure zero.
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The following lemma serves as a criterion for ruling out the exponential stability of

certain equilibria.

Lemma 32 Under the hypotheses of Theorem 20, let x0 ∈ KX(h(x0)) be an equilibrium

of (6.2). Assume that x0 is non-reducible, and that it is an accumulation point of

KX(h(x0)). Then almost no solutions of (6.2) converge towards x0.

Proof.

Since by Proposition 7 detA(p) = 0, it holds that leig(A(p)) ≥ 0. Since B,C 6= 0, it

follows that BC > 0. The same argument as was done in the proof of Theorem 20 shows

that leig(A + BC) > 0 and A + BC is an exponentially unstable matrix. Therefore

in the context of Corollary 4.5 of [48], x0 cannot be a ‘trap’, and therefore almost no

bounded solutions converge towards x0. Evidently no unbounded solution can converge

towards x0 either.

If it is assumed that the equilibria of (6.2) are nonsingular, then both the hypotheses

and the conclusion of the statement can be simplified. Note that the statement allows

for monotonicity with respect to abstract cones (as opposed to merely orthant cones).

Theorem 21 Consider a controlled monotone system (6.1) such that the closed loop

system (6.2) is strongly monotone and has nonsingular equilibria. Then almost all

bounded solutions of (6.2) converge towards those equilibrium points corresponding to

vectors p which are on a stable branch and such that −CA−1B − I is exponentially

stable.

Proof. Since the equilibria of the closed loop system are nonsingular, the inverse function

theorem can be invoked at every equilibrium e ∈ E. This implies that g is injective in

a neighborhood of e and that therefore E is discrete and countable. Let p ∈ U × X

correspond to an equilibrium of (6.2). Since by the Perron-Frobenius theorem the

leading eigenvalue of A+BC is real, nonsingularity in particular implies that A+BC

is hyperbolic. If leigA ≥ 0, then leigA+BC > 0 by hyperbolicity, and therefore almost

no initial condition will converge towards p. Thus almost all solutions converge to

those points p with leigA(p) < 0. Now suppose that p is such a point. Since A + BC
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is nonsingular, it holds by Lemma 31 that −CA−1B − I is nonsingular. Thus by

Theorem 17, exponential stability holds if and only if −CA−1B − I is Hurwitz.

The following corollary is equivalent to the main theorem in [31].

Corollary 12 Consider a controlled monotone system (6.1) with strongly monotone

closed loop, and such that for every u ∈ U , KX(u) = kX(u) is a singleton. Assume

also that A(u, kX (u)) is nonsingular for every u, and that the fixed points of the reduced

system (6.4) are also nonsingular.

Then almost all bounded solutions of (6.2) converge towards those equilibrium points

corresponding to vectors p such that −CA−1B − I is Hurwitz.

Proof. To apply the previous theorem, we only need to verify that the equilibria of the

closed loop (6.2) are nonsingular. But this follows from Lemma 31, and the fact that

the equilibria of the reduced system are nonsingular.

Since kX(u) attracts all solutions of ẋ = f(x, u) for every fixed u by monotonicity,

it follows in particular that leig(A) 6> 0. By nonsingularity of A, it must hold that A is

a Hurwitz matrix, for every u. Therefore the graph of KX is one single stable branch.

The conclusion of the corollary follows.

The next corollary assumes the stronger condition of hyperbolicity instead of non-

singularity. This may be useful in experimental applications, where a log plot of the

dynamics over time can potentially distinguish between exponential and asymptotic

stability.

Corollary 13 Consider an orthant monotone system (6.1) with strongly monotone

closed loop and hyperbolic equilibria. Assume that the set of equilibria is discrete. Then

the conclusion of Theorem 20 holds.

Proof. The necessity of the exponential stability of A(p) follows as in the proof of

Theorem 21. The remainder of the proof is as in that of Theorem 20.

The following theorem is the result of current unpublished work inspired by these

results, in the case that the set of equilibria E is not assumed to be discrete. Recall

that C is the set of states whose solution is convergent towards an equilibrium.
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Proposition 8 Consider a system ẋ = f(x) which is strongly monotone with respect

to a closed cone with nonempty interior. Assume that every set of reducible equilibria

Ê ⊆ E which is totally ordered with respect to � is at most countable. Assume also

that the set C has dense interior in X. Then almost all bounded solutions converge

towards an equilibrium in Es.

See chapter 2 of [101] for relatively weak conditions under which C has dense interior.

This result gives rise to the following variant of the main theorem, which does not

assume the discreteness of E.

Theorem 22 Consider a C1 system (6.1) defined on a closed orthant X of Rn, and

whose closed loop (6.2) is strongly monotone with respect to an orthant cone. Let the

system have bounded solutions, and let all reducible equilibria of the system lie in ∂X.

Then almost all bounded solutions of (6.2) converge towards those equilibrium points

x0 ∈ E that are either reducible (if any), or such that A(h(x0), x0) is Hurwitz and

−CA−1B − I is in N .

Proof. Since all reducible equilibria are contained in ∂X, there cannot be two such

equilibria ordered by �. The fact that int C is dense in X can be argued as follows:

consider the C1 system ẋ = f(x) restricted to int X, which has uniformly bounded

solutions by hypothesis. In this system int C is dense in int X, by the theorems in pp.

19-23 of [101]. The conclusion then follows for C in the original system.

By Proposition 8, we know that almost all bounded solutions converge towards some

equilibrium in Es. The same argument as in Theorem 20 can then be used to show

that if an equilibrium e ∈ X is non-reducible, then e is in Es if and only if A(h(x0), x0)

is Hurwitz and −CA−1B − I is in N .

Branches

Consider an open and connected set S ⊆ U (open in U) and a C1 function kX :

S → X, such that for all u ∈ S, kX(u) ∈ KX(u). If A(u, kX (u)) is Hurwitz for each

u ∈ S, the graph of kX is called a stable branch of KX . Similarly, if A(u, kX (u)) is

exponentially unstable for each u ∈ S, then the graph of kX is an unstable branch of
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KX . Finally, given u ∈ U , if the set L of limit points of KX(u) is nonempty, then L is

called a vertical branch of KX .

Multiple Branching As seen in the Example 6.9, it is possible for a point (u0, x0)

to be adjacent to multiple branches simultaneously. Although in this example (1, (0, 0))

is only a part of the vertical branch, it is a priori possible for a point to be part of more

than one branch simultaneously, or to none at all. We can rule out some possibilities: for

instance, a single point p cannot be part of both a stable and an unstable branch, since

the former would imply that A(p) is Hurwitz, and that latter that it is exponentially

unstable. But a single point may a priori be part of, say, two different branches of the

same type. Under this light, Proposition 7 can be viewed as stating that 1) a vertical

branch does not intersect any stable or unstable branches; 2) if A(p) is Hurwitz, then p

is part of exactly one branch, and this branch is stable. In particular, the only branches

that can intersect other branches are the unstable ones.
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Chapter 7

Applications and Further Results

7.1 Two Simple Autoregulatory Transcription Networks

The following example will be extended in the following section, but it will be useful to

provide it here as a first simple case. In a study of nitrogen catabolism, Mischaikow et

al. [11] consider an eucaryotic unicellular organism (specifically, yeast) which produces

a protein that crosses the nuclear membrane and promotes the further production of

its own messenger RNA. Let another protein also influence the transcription of the

messenger RNA, and denote its (for now fixed) concentration by λ. Denote by r, p

and q the concentrations of the mRNA, the intranuclear protein, and the extranuclear

protein respectively, and describe the system by the equations

ṗ = Kiq −Kep− a2p

q̇ = T (r) −Kiq +Kep− a3q

ṙ = H(p, λ) − a1r.

(7.1)

Here the functions H,T are such that ∂H/∂p > 0, ∂H/∂λ > 0, T ′(r) > 0 and represent

the transcription and translation rate, respectively. The constants a1, a2, a3 are dilu-

tion/degradation coefficients, and the constants Ki, Ke represent the rates of import

and export of protein through the nuclear membrane, respectively. (The original model

in [11] uses more arbitrary increasing functions Ki(x), Ke(x).) In order to study the

stability of this model, we write it as the closed loop of the controlled system

ṗ = Kiu−Kep− a2p

q̇ = T (r) −Kiq +Kep− a3q

ṙ = H(p, λ) − a1r.

h(p, q, r) = q, (7.2)
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It can be easily verified that this controlled system is monotone, and that for every

value of u there exists a unique equilibrium of the system with fixed control u. In

particular, the variable q converges globally to the value

q(u) = c1T (c2H(c3u, λ)) + c3c4u,

where c1 = 1
Ki+a3

, c2 = 1
a1
, c3 = Ki

Ke+a2
, c4 = Ke

Ki+a3
. The function q(u) corresponds

to the set characteristic k(u) = K(u) from the previous chapter.

a)

q

p

r+

+
+

+

up

r+

+
+

q

b)

q(u)

u

c)

Figure 7.1: System (7.1) has the associated digraph a). Item b) illustrates that of the
open loop system (7.2), and Item c) its associated function q(u) = K(u) = k(u).

We verify that this open loop system contains no reducible points. First, note that

the linearization of the closed loop system at any point has the associated digraph

in Figure 7.1 a), since all functions involved have positive derivative. Therefore the

matrices A+ BC, in the notation of the previous chapter, are all irreducible. Second,

note that the derivative of the right hand side of (7.2) with respect to u is a nonzero

matrix at every point, as is also ∇h. It is easy to verify that the multiplication of these

two matrices is nonzero, and the conclusion follows.

By Theorem 20, one can determine the set Es in (7.1) for every fixed value of

λ simply by looking at the fixed points of the function K(u) = k(u) (such as on

Figure 7.1 c)) and the respective slopes. That is, the equilibria in Es correspond to

the intersections (ū, ū) of q(u) with the diagonal for which q′(ū) ≤ 1, and the Hurwitz

equilibria to those points such that q′(ū) < 1. The fact that this correspondence is a

bijection is guaranteed by the following Lemma, which will also be useful below.

Lemma 33 System (7.1) satisfies property (H).
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Proof. Suppose that (p1, q1, r1), (p2, q2, r2) are two equilibria of (7.1) such that q1 = q2.

From the first equation in (7.1) we deduce that p1 = p2, and therefore also r1 = r2.

This implies the statement.

We conclude by the lemma above that the equilibria of the system are in bijective

correspondence with the fixed points of q(u). Furthermore, since there are no reducible

equilibria, we can apply Theorem 20, to conclude that almost all (bounded) solutions

converge towards the points corresponding to fixed points ū of q(u) with q′(ū) ≤ 1.

Using λ as a Control

After studying the stability of system (7.1) for fixed λ, we now consider this system

itself as a monotone controlled system with control λ. The previous discussion becomes

useful to study the resulting new characteristic function kX(λ). Letting now h(x) = p

for this new system, one can find the values pλ towards which p may converge given a

fixed value of λ. These values form the set characteristic k(λ).

The following technical Lemma will be used in the next section. We say that a set

function f is injective∗ if y ∈ f(x1), y ∈ f(x2) implies x1 = x2. This is the same as

requiring that f(x1) ∩ f(x2) = ∅ whenever x1 6= x2.

Lemma 34 The function K(λ) is injective∗.

Proof. Simply note that ∂q/∂λ > 0, and that therefore for every fixed u, there can be

at most one λ such that q(u, λ) = u. The result follows by definition of K(λ).

Most often K(λ) consists of two stable branches and one unstable branch, which are

joined together as in Figure 7.2 d). In the end of the following section, we will provide

a third and final layer of complexity for this case study.

Switch-like Behavior Observe in Figure 7.2 that system (7.1) may behave like a

switch: for values of λ in a high (low) range, there is a unique equilibrium which has a

high (low) output. If one maintains a high value of λ, one can after some time return to

a medium range and the state still tends to converge towards the high equilibrium, and

vice versa. Bistable behavior plays a central role in differentiation and other biological
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u

a)

u

b)

u

c)

d)

λ

K(λ)

Figure 7.2: The function k(u) for a) low, b) medium, and c) high values of the constant
λ. Using the main results, one can conclude which equilibria are Hurwitz for every fixed
value of lambda, and therefore draw the function K(λ) for the (now) open loop system
(7.1), h(p, q, r) = q.

forms of memory, as has been recognized in classical work on the lambda phage lysis-

lysogeny switch and the hysteretic lac repressor system [78, 90] as well as the current

literature. See for instance Thattai [85] for a more recent treatment.

7.1.1 A Second Application

Consider a strongly monotone system (6.2) and its associated reduced system (6.4).

In the case that (6.4) is itself strongly monotone and has bounded solutions, one can

apply Hirsch’s theorem and deduce that almost all trajectories converge toward one of

the Hurwitz steady states. The question arises as to whether the analogy between the

two systems could be carried further: if the output function h were surjective, does it

hold that x(t, x0) converges to x̄ in (6.2) if and only if u(t, h(x0)) converges to h(x̄)

in (6.4)? In other words, do the basins of attraction of each stable point correspond

to each other, as the stable points do? Unfortunately this is not true, as the example

below will illustrate.

Our second application of the main results in the previous chapter is an example
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of a coupled biological circuit. An important class of proteins, referred to as transcrip-

tion factors, regulate transcription of messenger RNA by promoting (or inhibiting) the

binding of the enzyme RNA polymerase to the DNA sequence. An autoregulatory

transcription factor regulates the production of its own messenger RNA. Transcription

factors are very common, and often more than one is necessary for RNA polymerase to

initiate transcription. For a mathematical analysis of the simple autoregulatory circuit,

see Smith [101]1.

Let p1, p2 be two autoregulatory transcription factors, and r1, r2 their corresponding

messenger RNAs. We will couple the circuits by assuming that the proteins are also

needed to regulate each other’s transcription. The dynamics of the circuit is thus

expressed as follows:

ṗi = airi − bipi

ṙi = gi(p1, p2) − ciri,
i = 1, 2. (7.3)

We assume that both g1(p1, p2) and g2(p1, p2) are increasing functions of both p1 and

p2, as well as positive and bounded. The interconnections are illustrated in Figure 7.3.

Note that all the solutions of this system are bounded: the boundedness of the functions

gi bounds the values of ri as t→ ∞, and this in turns bounds the values of the variables

pi.

We analyze the dynamics of this system by cutting the loop as indicated in the

figure, and we arrive to the following controlled system with two inputs:

ṗi = aiui − bipi

ṙi = gi(p1, p2) − ciri,
i = 1, 2. (7.4)

which is monotone under the usual positive orthant cone. If we fix the input (u1, u2),

the system converges toward the point

pi =
ai
bi
ui, ri =

1
ci
gi

(
a1

b1
u1,

a2

b2
u2

)
,

1The standard model in p. 58 of [101] is in fact another interesting application of Theorem 20: by
cutting the arc xn → x1 as explained in our example, the results in Section 4.2, [101], follow by looking
at the fixed points of k(u) = α−1

1 . . . α−1
n g(u). Furthermore, the local stability of each equilibrium is

determined by the slope of k(u) at each corresponding fixed point.
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.
p

p1

r1

r2

2

Figure 7.3: Interconnections for system (7.3). The dotted lines indicate where the
interconnections will be cut and replaced by inputs.

which constitutes the value of kX at the point (u1, u2). In order for the closed loop to

be (7.3), we need

h(p1, p2, r1, r2) = (r1, r2),

which when composed with kX yields

k(u, v) =
(

1
c1
g1

(
a1

b1
u1,

a2

b2
u2

)
,

1
c2
g2

(
a1

b1
u1,

a2

b2
u2

))
.

Under mass action kinetics assumptions, a quasi-steady state analysis (see [57]) yields

for the gi the general form

gi = σ̂i
pmi
1 pni

2

K̂i + pmi
1 pni

2

. (7.5)

The coefficients mi, ni describe the cooperativity with which the proteins bind to the

DNA sequence. For instance, if two p1 proteins bind to each other (forming a dimer)

before acting on the DNA sequence of pi, then mi = 2. It is a reasonable assumption

that the cooperativity of a given protein is the same as it bind to any of the two DNA

sequences, that is m1 = m2 = m,n1 = n2 = n. We set for the sake of the argument

m = 2, n = 1. The remaining coefficients K̂i, σ̂i are determined by the way the proteins

bind to the particular DNA sequence and how they aid the polymerase enzyme. We

have

k(u1, u2) =
(
σ1

u2
1u2

K1 + u2
1u2

, σ2
u2

1u2

K2 + u2
1u2

)
,

where σi = σ̂ic
−1
i , Ki = K̂ia

−2
1 b−2

1 a−1
2 b−1

2 .
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Stability Analysis

This system will now be studied in the framework of the main results in the previous

chapter. First, recall that since the system has a well defined characteristic function

kX , then the property (H) is satisfied and the set E is in bijective correspondence with

the fixed points of k.

Now the degeneracy of the equilibria in E is discussed.

Lemma 35 The only reducible equilibrium of system (7.3), using the form of the func-

tions gi given by (7.5), is the trivial equilibrium 0. This equilibrium is stable.

Proof. Note that for every fixed point e ∈ E it holds C 6= 0 and B 6= 0. In fact, given the

different digraphs associated to the open and closed loops around a given fixed point,

and given that they are given by the matrices A and A+BC respectively, it must follow

BC 6= 0. Also note that if (u1, u2) is a fixed point of k and u1 = 0, then necessarily

u2 = 0/K2 = 0. Similarly for u2. Therefore if k(u) = u, then either u = 0 or u � 0.

One can similarly see that for e ∈ E, either e = 0 or e� 0. But for e� 0, the Jacobian

matrix associated to the closed loop system around e is given by Figure 7.3, and e is

therefore a non-reducible point. We conclude that the only reducible equilibrium is

0. It can be verified by hand that leigA + BC < 0 at this reducible equilibrium, thus

completing the proof of the statement.

We have therefore successfully ‘reduced’ the four dimensional system (7.3) to the

simpler, two dimensional system (6.4), as the following corollary concludes.

Corollary 14 The stability of every equilibrium in (7.3) corresponds to that of its

associated equilibrium in the reduced system (6.4)

Proof. For the exponentially stable equilibrium 0 of the closed loop system, this follows

from Theorem 17. The remaining equilibria are on stable branches by Proposition 7,

item 3. The conclusion follows by Theorem 20.

Observe that for the reduction argument above we have used relatively little in-

formation about the reduced system itself. In the paragraphs below, we proceed to

actually find its equilibria and illustrate their stability.
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Finding the Solutions of the Reduced Model

Apart from the trivial solution (0, 0), the equation k(u1, u2) = (u1, u2) can be rewritten

as

K1 + u2
1u2 = σ1u1u2, K2u2 + u2

1u
2
2 = σ2u

2
1u2. (7.6)

We solve for u1 in the first equation of (7.6) and replace in the second equation, ob-

taining

K1u
2
1 = (σ2u

2
1 −K2)(σ1 − u1)u1 . (7.7)

−
√

K2
σ2

√
K2
σ2

σ1 u1

(σ2u2
1−K2)(σ1−u1)u1

K1u2
1

Figure 7.4: The solutions of the system of equations (7.7)

From Figure 7.4 we see that there might be only one nonnegative solution of (7.6)

(i.e., the trivial solution u1 = 0), or there may be three nonnegative solutions, in the

case that K1,K2 are comparatively small. In Figure 7.5 one can see an example in

which the reduced system has one exponentially unstable and two exponentially stable

equilibria. Therefore the same is true for the original system (7.3). Note that additional

solutions may appear outside of the positive quadrant.

Given the simple form of the output function h(x) = (r1, r2), any basin of attraction

of u̇ = k(u) − I will correspond in X (under h−1) to a rather rigid set, namely that

of every (p1, p2, r1, r2) such that (r1, r2) is in the basin. It is clear that the basins of

attraction of (7.3) don’t have this form — this limits the analogy between (7.3) and its

reduced system.
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On the other hand, the same procedure can be applied for cones that are not neces-

sarily the positive orthant: for instance if, in the above example, each protein promoted

its own growth and inhibited each other’s growth, then KX = R+×R−×R+×R− would

make (7.3) strongly monotone.

Figure 7.5: The vector field γ(u) = k(u) − u, using parameter values σ1 = 4, σ2 =
2,K1 = 4,K2 = 5.

7.2 Stable Equilibrium Descriptors

In this section we illustrate a way to apply systematically the main results in order to

carry out an analysis of a more complex monotone system.

Consider an autonomous, monotone dynamical system

ẋ = f(x) (7.8)

which allows a representation by the signed digraph G. It will be assumed for the sake

of simplicity that X = (R+)n throughout this section. The definition that follows is

quite general, and it doesn’t necessarily require monotonicity (but we do it given what

follows).

Let H be a proper subdigraph of G, not necessarily generated by a proper subset

of the vertices of G. Let

In(H) = {xi ∈ V (G) | there exists xj ∈ V (H) such that (xi, xj) ∈ E(G) −E(H)}

Out(H) = {xi ∈ V (H) | there exists xj ∈ V (G) such that (xi, xj) ∈ E(G) −E(H)}
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Note that the elements of In(H) may or may not lie on V (H).

Enumerate In(H) as {xα1 , . . . , xαm} and Out(H) as {xω1 , . . . , xωl
}. If the variables

are denoted in a different way (for instance p1 . . . p2, q1 . . . qs as below), the definition

can be adapted slightly in the natural way. Then one can define a controlled dynamical

system with U = (R+)m, Y = (R+)l by

ẋ = fH(x, u), y = h(x), (7.9)

Here the nodes of H are used as the variables of the system, and the function fH is

formed by replacing xαi with ui on every function fj such that xj ∈ V (H), (xαi , xj) ∈

E(G) −E(H). The output function h : X → Y is defined as h(x) = (xω1 , . . . , xωl
).

We define the set function SH : U → P(Y ) in the following manner: for every u ∈ U ,

let

SH(u) = {h(x0) | fH(x0, u) = 0 and
∂fH
∂x

(x0, u) is Hurwitz}.

We refer to the function SH as the stable equilibrium descriptor associated to H, or

SED(H) for short.

The Case V(H) = V(G) Special consideration is given to the case in which V (H) =

V (G), that is when H is the result of merely eliminating a number of arcs from G. In

that case (7.9) is simply a canonical decomposition of (7.8) as a monotone control sys-

tem under positive feedback. It holds by definition that In(H) = Out(H), and it is

further imposed in this case that the same enumeration be used for these sets, that

is αi = ωi for all i. Under these conditions, the closed loop of the system is simply

(7.8). Furthermore, the graph of SH consists precisely of the ‘stable branches’ of the

set characteristic function KX .

Cascades of SEDs

Given a cascade of controlled systems

żi = gi(z1, . . . , zi), i = 1 . . . k, (7.10)

it is easy to see that the equilibria of (7.10) are in one to one correspondence with tuples

(z̄1, . . . , z̄k) of equilibria zi of each cascade step. The following lemma gives a similar

statement involving the stability of the equilibria.
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Lemma 36 Consider a (not necessarily monotone) cascade (7.10). Then a tuple of

vectors (z̄1, . . . , z̄k) is an exponentially stable equilibrium if and only if for every i, z̄i is

an exponentially stable equilibrium of

żi = gi(z̄1, . . . , z̄i−1, zi). (7.11)

Proof. The proof is obvious from the fact that the characteristic polynomial of the

cascade is the product of that for Bii, for i = 1, . . . , n.

The following lemma will allow the streamlined use of the main results in applica-

tions, and it can be thought of as a nonlinear version of the result above. Let H be a

subdigraph of a signed digraph G, and let H1, . . . Hk be subdigraphs of H. We say that

the Hi form a cascade decomposition of H if:

1. The sets V (Hi) form a partition of V (H).

2. In(H) = In(H1), and Out(H) = Out(Hk).

3. Out(Hi) = In(Hi+1) for i = 1 . . . k − 1.

Given functions f : A → P(B), g : B → P(C), we compose in the natural way to

form the function g ◦ f : A→ P(C):

g ◦ f(a) = {c ∈ C | there exists b ∈ B such that b ∈ f(a), c ∈ g(b)}

=
⋃

b∈f(a)

g(b).

Lemma 37 Consider an orthant monotone system (7.8). Let H ≤ G, and let H1, . . . Hk

be a cascade decomposition of H. Then SH = SHk
◦ . . . ◦ SH1 .

Proof.

System (7.9) can be written as a cascade

ẋi = f iH(x1, . . . , xi, u), i = 1 . . . k.

Since (7.8) is orthant monotone, there exists a function V (g) → {−1, 1} which is consis-

tent with G - see Section 3.4. The same function can be used to show that the systems
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induced by H,H1, . . . Hk are (orthant) monotone as well. Let u be a fixed input for

this system, and let y ∈ SH(u). That is, let the vector tuple x̄ = (x̄1, . . . , x̄k) be an

exponentially stable equilibrium of this cascade, and y = h(x̄). By the previous lemma,

it holds that for every i = 1 . . . k the vector x̄i is an exponentially stable equilibrium of

ẋi = f iH(x̄1, . . . , x̄i−1, xi, u). (7.12)

Now consider for each i the system

ẋi = fHi(x
i, ui), (7.13)

with output hi(xi). We show that for yi := hi(x̄i) for all i, it holds that

1. y1 ∈ SH1(u)

2. yi ∈ SHi(y
i−1), i = 2 . . . k, and

3. yk = y.

This will imply that y ∈ SHk
◦ . . . ◦ SH1(u).

To see 1. note that f1
H(x1, u) = fH1(x

1, u) by In(H) = In(H1), and that there-

fore x̄1 is an exponentially stable equilibrium of ẋ1 = fH1(x
1, u) by (7.12). Therefore

y1 = h1(x̄1) ∈ SH1(u) by definition. Statement 3. follows directly from the fact that

Out(H) = Out(Hk).

We show that for every i = 2, . . . k, x̄i is an exponentially stable equilibrium of

ẋi = fHi(x
i, yi−1)

(from which 2. follows by definition). To see this, note that since yi−1 = hi−1(x̄i−1),

fHi(x
i, yi−1) is the result of replacing all variables in fj that are not in V (Hi) with

the corresponding values from x̄i−1. That is, fHi(x
i, yi−1) = f iH(x̄1, . . . , x̄i−1, xi). The

statement follows once again by (7.12).

The other direction of the proof consists of letting y ∈ SHk
◦ . . . ◦ SH1(u), and

showing that y ∈ SH(u). By definition, there exist vectors yi, i = 1 . . . k, such that the

statements 1., 2., 3. above hold. Define x̄i to be some exponentially stable equilibrium



125

of (7.13), which must exist by definition of SHi , i = 1 . . . k. By the same argument

as before one can show that x̄ = (x̄1, . . . , x̄k) is an exponentially stable equilibrium of

(7.9), using the previous lemma. After observing that y = yk = h(x̄), the conclusion

follows to imply that SH(u) = SHk
◦ . . . ◦ SH1(u).

Note: one can generalize this statement to the case where ẋ = f(x) is not orthant

monotone, but each individual Hi is. This is more general than assuming that H is

orthant monotone: the interconnections between Hi and Hi+1 may not be consistent if

|Out(Hi)| > 1.

7.3 A Larger Example

Now we are ready for the analysis of a medium scale, monotone dynamical system.

Consider a cycle of k proteins p1, . . . , pk, each of which with its respective messenger

RNA. Let each protein promote the transcription of its own mRNA, as documented for

example in [11] in the case of nitrogen catabolism. Let also each protein pi promote

the transcription of pi+1, or that of p1 in the case of pk. The full system therefore looks

like

ṗi = Kimp,i(qi) −Kexp,i(pi) − a2ipi

q̇i = T (ri) −Kimp,i(qi) +Kexp,i(pi) − a3iqi

ṙi = H(p1, pi−1) − a1iri,

i = 1 . . . k, (7.14)

where p0 is identified with pk throughout. (The model in [11] lets certain inter-protein

transcription factors be inhibitory, and doesn’t fit the present analysis from here on).

Let all constant parameters of this system be positive. As to the nonlinear functions

Ti,Hi, assume that they are nonnegative, and that

T (0) = 0, T ′
i (θ) > 0,Ks,i(0) = 0,K′

s,i(θ) > 0, i = 1 . . . k, s = ‘imp’, ‘exp’, θ ≥ 0,

Hi(0, 0) = Hi(0, φ) = Hi(θ, 0) = 0, ∇Hi(θ, φ) � 0, i = 1 . . . k, θ, φ > 0.
(7.15)

See Figure 7.6 for an illustration. In order to best visualize the behavior of this

complex system, only one input will be introduced, and the multi-valued function K(u)
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Figure 7.6: The digraph associated to system (7.14) in the case k = 3.

will be computed using the tools from digraph decompositions. The open loop system

considered is

ṗi = Kimp,i(qi) −Kexp,i(pi) − a2ipi, i = 1 . . . k,

q̇i = T (ri) −Kimp,i(qi) +Kexp,i(pi) − a3iqi, i = 1 . . . k,

ṙi = H(p1, pi−1) − a1iri, i = 2 . . . k,

ṙ1 = H(p1, u) − a1ir1,

, h(pi, qi, ri) = pk. (7.16)

Lemma 38 The only reducible equilibrium of system (7.16) is the trivial equilibrium

0.

Proof. The fact that the origin is an equilibrium is an immediate consequence of the

hypotheses. Since ∇Hi(0, 0) = 0 for all i, this equilibrium has a Jacobian which is not

irreducible, and it is therefore a reducible equilibrium.

If e is an equilibrium such that, say, qi = 0 for some i, then necessarily ri = pi = 0.

If ri = 0, then either pi = 0 or pi−1 = 0. Similarly, if pi = 0, then qi = 0, ri = 0 and

ri+1 = 0. Using such arguments, it follows that if e 6� 0, then e = 0.

If e� 0, on the other hand, then the hypotheses on the partial derivatives in (7.14)

ensure that the Jacobian at the point e has the associated digraph in Figure 7.6. Also
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for such an equilibrium, the associated matrices B and C are nonzero, and in fact

BC 6= 0 by the argument given above. It follows that e is a non-reducible equilibrium.

The exponential stability of the origin itself can be readily verified by directly com-

puting the Jacobian.

We find an efficient way to compute the function K(u) as well as its stable branches.

In order to do this, we apply the results on cascade decompositions above.

Let H consist of the same nodes and arcs of G except for the arc (pk, r1), so that

in effect SH consists of the stable branches of K. Consider the subdigraph Hi of G

generated by the nodes ri, pi, qi, for each i = 1 . . . k. It holds that In(Hi) = {pi−1} and

that Out(Hi) = {pi}. If Ki is the characteristic function of the i-th system of the form

(7.2), then it clearly follows that K = Kk ◦ . . . ◦ K1. This decomposition of (7.14) is

used for the following result.

Lemma 39 System (7.16) satisfies condition (H).

Proof. This is a direct consequence of Lemmas 33 and 34: let (pi1, q
i
1, r

i
1), (pi2, q

i
2, r

i
2)

be two different equilibria such that pk1 = pk2 . Let j be the least index such that

(pj1, q
j
1, r

j
1) 6= (pj2, q

j
2, r

j
2). We can view the system associated to Hi as a closed loop of

the form (7.2), and use as constant λ the value pi−1
1 = pi−1

2 , or pk1 = pk2 if i = 1. From

Lemma 33 it follows that pj1 6= pi2. But from Lemma 34 it follows that pi+1
1 6= pi+1

2 .

Inductively, it must follow pk1 6= pk2, which is a contradiction.

This lemma can be generalized to abstract closed cascades as follows: if every com-

ponent of the cascade satisfies condition (H) and has injective∗ characteristic, then the

closed loop of the cascades also satisfies (H).

Corollary 15 Every nonzero equilibrium e ∈ Es in (7.14) corresponds bijectively to a

fixed point on a stable branch of the real, multivalued function K(u), with slope less or

equal than 1.

Proof. Follows from the fact that every nonzero equilibrium in Es is non-reducible,

Theorem 22, Lemma 30, and Lemma 39.
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It is easy to see that H1, . . . ,Hk form a cascade decomposition of the graph H. By

Lemma 37, SH can be written as the composition of all the functions SHi , i = 1 . . . k.

We write this in the following corollary.

Corollary 16 Every nonzero equilibrium e ∈ Es in (7.14) corresponds bijectively to a

fixed point on the graph of SH1 ◦ . . . ◦ SHk
, with slope less or equal than 1.

We implemented these ideas on Matlab, using the functions

H(x, y) =
A1x

m +A2y
n

A1xm +A2yn +B1
, T (r) =

A4

B2 + r
, Kimp(q) = Kiq, Kexp(p) = Kep.
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Figure 7.7: The multivalued characteristic graphs for system (7.1), using the parameters
sets from (7.17). Stable branches are solid, and unstable branches are dotted.

The function H can be derived using Michaelis-Menten kinetics (quasi steady state

analysis, see [57]) in the case of the gene regulation of two proteins that form m- and

n-mers before binding to the mRNA protein (resp.) and which complement each other

in the sense that either of the two can facilitate the transcription process without the

other’s help. For simplicity, we will assume m = 4, n = 1 throughout (albeit in the

case of cascades of two subsystems, it would be more realistic to let m = 1, n = 4

for the second subsystem, etc). The function T (r) is another Hill-type function with

saturation, and the functions Kimp,Kexp are assumed to be linear.
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Figure 7.8: In chart c), the function K(u) for system (7.14), k = 2, using the systems
from Figure 7.7 a) and b) as first and second components, respectively, by composing
the functions in these two charts. In chart d), the stable branches are isolated, thus
forming the function SH(u) = SH2 ◦ SH1 .
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Figure 7.9: In e) and f), the same procedure as in Figure 7.8 is carried out for a system
(7.14), k = 3, using the systems from Figure 7.7 a), b) and a) as first, second and third
components, respectively.
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Consider two subsystems of the form (7.1), with parameters

First System: Ki = 1/6; Ke = 1/15; a1 = 1; a2 = 1/10; a3 = 1/6;

A1 = 1; A2 = 1; A4 = 10; B1 = 16; B2 = 10,

Second System: Ki = 1/6; Ke = 1/12; a1 = 1; a2 = 1/12; a3 = 1/6;

A1 = 1; A2 = 1; A4 = 10; B1 = 16; B2 = 10,

(7.17)

and coupled in the form (7.14), k = 2. Let the system be opened in the form (7.16),

and write its associated digraph as a cascade of the subsystems H1,H2 as given above.

In Figure 7.7 a),b) are illustrated the functions K(λ) of the two subsystems in the sense

of Section 7.1. Recall that the output of those systems was h = q, and that the output

of the subsystems here should rather be p. To avoid confusion, the constants Ki,Ke, a2

are chosen throughout so that p = q for any equilibrium of a system (7.1). The charac-

teristic function K(u) of system (7.14) can therefore be seen as the composition of these

two functions, and it is depicted in Figure 7.8 c). (Note that the resolution of the graph

can present a problem in the upper right corner.) By Lemma 37, the stable branches

of K(u) are the composition of those of the two subsystems – they are illustrated as

solid lines throughout the Figure, and separately on Figure 7.8 d).

Every one of the intersections of the graph in Figure 7.8 c) with the diagonal rep-

resents an equilibrium in system (7.14). But only a few of those are stable, and they

correspond to those points in Figure 7.8 d) on a stable branch (and whose slope is less

or equal than one).

In Figure 7.9, a nine-variable system is considered as in Figure 7.6. By composing

the function in Figure 7.8 c) with that in Figure 7.7 a), the associated set valued

characteristic is given in Figure 7.9 e), and its associated stable branches (i.e. the

function SH) in Figure 7.9 f).

7.4 Introducing Diffusion or Delay Terms

The discussion of the previous and present chapters has been carried out exclusively

for finite dimensional systems. Given a strongly monotone system, the problem has

been to find the equilibria towards which almost all of the solutions converge, and the



131

strategy to do this has been to root out all the exponentially unstable equilibria of the

system. It turns out that the results given have a very direct application to the case of

delay or reaction diffusion strongly monotone systems. To do this one will use the two

properties of monotone systems described in Sections 3.7 and 3.8: a strongly monotone

delay (reaction diffusion) system can have its delay (diffusion) term removed without

changing the general stability properties around an equilibrium (see these sections for

details). We will also make use of the results from Chapter 8, for the reaction-diffusion

case.

7.4.1 Delay Systems

It is not uncommon for biological systems to involve delays. For instance, in the above

example, it is known that cells can take a few minutes, or more, creating and folding

a protein from the moment that the messenger RNA is present. This will lead to a

delay τi to appear in the first equation of (7.4), i = 1, 2. Another common source of

delays is given by the transport of molecules, say, through the blood flow, an example

of which is the delay in the system of Chapter 2. It is possible for a delay to be detected

experimentally, yet not to be able to identify its cause, for instance if additional protein

and transcription interactions are unknown.

Let K̂ ⊆ Rn be a closed cone with nonempty interior. Consider a delay system

ẋ = f(xt) (7.18)

defined on the state space X ⊆ C([−τ, 0],Rn), which is strongly monotone with respect

to

K := {φ ∈ C([−τ, 0],Rn) |φ(t) ∈ K̂ for every t},

and which has a countable set of equilibria E. We can associate to this system the

finite dimensional system

ẋ = f̂(x), (7.19)

where f̂(x) = f(x̂). See Section 5.1. This system is strongly monotone with respect

to K (see comments before Corollary 5.5.2 in [101]). The fact that any equilibrium
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of (7.18) is a constant function means that there is a natural correspondence between

the equilibria of (7.18) and (7.19). In the case of reaction-diffusion equations, a similar

correspondence doesn’t hold; see Section 12.1.

The key result is Corollary 4, which ensures that an equilibrium ê of (7.18) is

exponentially unstable if and only if the corresponding equilibrium e of (7.19) is expo-

nentially unstable.

In order to generalize the results of the previous chapter to infinite-dimensional

systems, we will use the following convenient concept of ‘sparseness’ due to Yorke et

al. and Christensen [51, 17]. A Borel measurable subset A of a Banach space B is

said to be shy if there exists a compactly supported Borel measure µ on B such that

µ(A + x) = 0 for every x ∈ B. See also Chapter 8. In finite dimensions, the concepts

of shyness and zero Lebesgue measure coincide. Given a set W ⊆ B, we also say that

a set A is prevalent in W if W −A is shy.

Define the sets

B = {φ ∈ X |O(φ) has compact closure in X}

C = {φ ∈ X | limt→∞ x(t, φ) = {e} for some e ∈ E}

Cs = {φ ∈ X | limt→∞ x(t, φ) = {e} for some e ∈ Es}

The strong monotonicity theorem by Hirsch still applies to system (7.18), i.e. the

set of elements in B whose solution doesn’t converge to the set of equilibria is shy

(Theorem 26). Since E is countable, any solution that converges to the set of equilibria

actually converges towards some equilibrium. Moreover, the set of states that converge

towards an exponentially unstable equilibrium is shy - see Lemma 45. Using the fact

that a countable union of shy sets is shy we obtain the following result.

Corollary 17 Let the strongly monotone system (7.18) have enumerably many equi-

libria. Then Cs is prevalent in B.

The proof of Theorem 20 consists of rooting out the exponentially unstable equi-

libria e of a dynamical system (7.19), which correspond to the exponentially unstable

equilibria ê of (7.18). A consequence is the following corollary.
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Corollary 18 Consider a finite dimensional system (6.1) which is monotone with re-

spect to an orthant cone, and whose closed loop (6.2) is strongly monotone. Then every

equilibrium e ∈ Es of (6.1) is either reducible, or such that A(h(e), e) is Hurwitz and

−CA−1B − I is in N .

We have the following theorem, whose proof follows by combining the two previous

corollaries.

Theorem 23 Let K̂ be an orthant cone, and let (7.18) be a strongly monotone system

with respect to K with countable equilibria. Then almost all bounded solutions of (7.18)

converge towards those equilibrium points ê such that the corresponding equilibrium e

of (7.19) is either reducible (if any), or such that A is Hurwitz and −CA−1B − I is in

N .

Notes: The words ’almost every’ are given here in the context of prevalence. See

Section 6.4 for the terminology A,B,C, given an equilibrium e of (7.19).

Example

Consider the delay system

ṗi = airi(t− τi) − bipi

ṙi = gi(p1, p2) − ciri,
i = 1, 2, (7.20)

corresponding to the finite dimensional system (7.3) with the introduction of one tran-

scription delay. It is important to verify that this delay system is strongly monotone

with respect to some well chosen state space — this can be done by verifying the condi-

tions (M), (I), (R) from Chapter 5 of [101] in the cooperative case. See also Section 3.7.

Once this has been verified, by the argument above almost all solutions (in the preva-

lence sense) of the system converge towards one of the equilibria in Es of (7.3), which

was studied in Section 7.1. These equilibria correspond in turn to those of the two

dimensional, strongly monotone system (6.4), by Corollary 14). A vector field for this

system is displayed in Figure 7.5.
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7.4.2 Reaction-Diffusion Systems

Consider a convex bounded domain Ω ⊆ Rm with smooth boundary, and a reaction

diffusion system under Neumann boundary conditions

ẋ = ∆x+ f(x) (7.21)

which is strongly monotone with respect to

K := {x ∈ C(Ω,Rn) |x(q) ∈ K̂ for every q},

for K̂ an orthant cone. Useful sufficient conditions for the strong monotonicity of this

system are given in Chapter 7 of [101] in the cooperative case; see also Chapter 8.

To this system we associate the finite-dimensional system

ẋ = f(x). (7.22)

If the state e is an equilibrium of (7.22), then the constant function ê is an equilibrium

of (7.21). But, unlike in the delay case, there may be equilibria of (7.21) which do

not correspond to equilibria of (7.22), i.e. which are not uniform in space. Moreover,

assuming the existence of only countably many equilibria of (7.21) can be difficult

to enforce, see Corollary 22. The material in Chapter 8 can be seen in fact as a

generalization of Corollary 17 to the case of more abstract spaces. In the case of

reaction-diffusion systems, Theorem 29 provides the result that we need to extend the

ideas from Chapter 6.

Let system (7.22 be written as the closed loop of a controlled monotone system ẋ =

g(x, u), u = h(x), and for a given equilibrium e ∈ E define as before A = gx(e, h(e)),

B = gu(e, h(e)), C = hx(e).

Theorem 24 Let (7.21) be such that f is C1 and system (7.22) is strongly cooperative,

f ′(x) is irreducible for all x, the solutions of (7.21) are uniformly bounded, and Ω is

convex. Then almost all bounded solutions of (7.21) converge towards those equilibrium

points ê such that the corresponding equilibrium e of (7.22) is either reducible (if any),

or such that A is Hurwitz and −CA−1B − I is in N .
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Proof. By the proof of Theorem 29, Cs is prevalent in X for the system (7.21). We

know from Kishimoto et al. [59] that in the case that ∂fi/∂xj > 0 for all i 6 j, Es is

contained in the set of uniform equilibria. It can be verified by following the proof in that

reference that the same result is true in the general strongly cooperative case, as long

as every element of Es is irreducible. Therefore almost all states in B converge towards

some uniform, equilibrium in Es (in the sense of prevalence). But by Proposition 2,

these equilibria are in bijective correspondence with the equilibria in Es of (7.22).

Corollary 18 provides a criterion for finding these equilibria, and using it the statement

of this theorem follows.

Example

Consider the system (7.14), under the functions given by (7.15), except that

∇Hi(θ, φ) � 0, i = 1 . . . k, θ, φ ≥ 0,

instead of only for θ, φ > 0. Then one can verify that system (7.14) has no reducible

equilibria, following a very similar argument as under the original assumptions in Sec-

tion 7.3, and that therefore the assertion in Corollary 15) holds for every equilibrium

e ∈ Es of (7.14) including e = 0. Consider the reaction-diffusion system

ṗi = dpi∆pi +Kimp,i(qi) −Kexp,i(pi) − a2ipi

q̇i = dqi∆qi + T (ri) −Kimp,i(qi) +Kexp,i(pi) − a3iqi

ṙi = dri∆ri +H(p1, pi−1) − a1iri.

(7.23)

By establishing the usual correspondence ê → e → (h(e), h(e)) between uniform equi-

libria of (7.23) and the fixed points of the multivalued function K(u), we reach the

following conclusion.

Corollary 19 The set of states that converge towards a equilibrium in Es of (7.23)

is prevalent in X. Every such equilibrium corresponds bijectively to a fixed point on a

stable branch of the real, multivalued function K(u), with slope less or equal than 1.

Proof. Follows from Theorem 7.21, the uniform boundedness of (7.14) following from

the fact that (7.14) has bounded solutions, and using the monotonicity hypothesis for
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the diffusion system. The proof that the correspondence is a bijection follows as in

Corollary 15.

7.5 Low Pass Filters

It turns out that the controlled systems considered in the main results of Chapter 6

allow for certain kinds of subsystems to be introduced downstream, without changing

the quantitative values of their I/O characteristic, their steady states, or the stability

of each of their steady states. An important example will be the introduction of low

pass filters, which are subsystems that imitate the introduction of delays in a finite

dimensional setting (see below).

Consider a controlled monotone system

ẋ = f(x, u), y = h(x) , (7.24)

whose closed loop is strongly monotone with respect to a closed cone with nonempty

interior. For the sake of simplicity, let the function KX = kX be single valued, and

assume that 1) for every u, k(u) is an exponentially stable, globally attractive equilib-

rium of ẋ = f(x, u), and that 2) every equilibrium of E is nonsingular. In particular,

kX is a strong I/S characteristic, see [31].

Consider a second controlled monotone system with I/O characteristic, which is an

extension of (7.24) of the form

ẋ = f(x, u), y = h(x),

ż = g(z, v), v = y, w = H(z) .
(7.25)

Here Y = V and W = U , and g(z, v) and H are chosen so that, in an appropriate

technical sense, and for large classes of inputs v, the second system satisfies

H(z(t)) ' v(t− τ)

independent of initial conditions. A simple example is of course τ ż = v− z (and, more

generally, a linear system ż = Az+Bv, w = Cz which is a state-space model of a Padé
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approximation of the delay eτs in the frequency domain) or a cascade of such systems.

We will give sufficient conditions to ensure that the closed loop of the extended system

(7.25) can be reduced to the closed loop of (7.24) in a similar fashion as it was done in

Section 7.4.

We will say that a system of the form (7.25) reduces to its corresponding system

(7.24) if both have the same I/O characteristic, and if the points inEs (the exponentially

stable points) of their corresponding (unity-feedback) closed loops are in canonical

correspondence.

Theorem 25 Consider monotone systems (7.25.1) and (7.25.2) with I/O character-

istics k1(u) and k2(v) = v respectively. Assume that the closed loop systems of (7.24)

and (7.25) are strongly monotone. Then system (7.25) has a I/O characteristic, and it

reduces to system (7.24).

Proof.

We linearize the controlled system (7.25), around a fixed input value u and a fixed

state (x, z), and the resulting linear system has the form


 x

z




′

=


 fx(x, u) 0

gv(z, h(x))hx(x) gz(z, h(x))





 x

z


 +


 fu(x, u)

0


u,

w = ( 0 H ′(z))


 x

z


 .

Since (7.25.2) is monotone and has a well defined I/S characteristic, fixing an input

value u and letting h(t) = v(t) converge to k1(u) will make z(t) converge to kZ(k1(u)).

This follows from the converging input, converging state property, see [6]. Thus H(t)

converges towards HkZ(k1(u)) = k2(k1(u)) = k1(u). This means that the extended

system (7.25) has a well defined I/O characteristic which is equal to that of (7.24). In

particular, it has nondegenerate fixed points (using the notation of [31]). We verify

that k(u) = (kX(u), kZk1(u)) is also nondegenerate:

det


 fx(x, u) 0

gv(z, h(x))hx(x) gz(z, h(x))


 = det fx(x, u) det gz(z, h(x))
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and evaluating at x = kX(u), z = kZk1(u), by nondegeneracy of k1 and k2 we have

det fx(kX(u), u) 6= 0, det gz(kZk1(u), k1(u)) 6= 0 and nondegeneracy of the new charac-

teristic follows.

The exponentially stable equilibria of (7.25) are in canonical correspondence with

those of u̇ = h(k1(u))−u by Theorem 20, and these correspond to those of (7.24), again

by Theorem 20.

See also Lemma 36. As a sufficient condition for the strong monotonicity of the

system (7.25), one can assume their partial or strong excitability and transparency. See

Section 10.1.

For the specific case of orthant cones, the following result can be used to apply one

or more different delays while guaranteeing the strong monotonicity of the closed loop

of (7.25). Consider a sign definite monotone system with multiple outputs

ẋ = f(x, u), y` = h`(x),

ż` = g`(z`, v`), v` = y`, w` = H`(z`), ` = 1 . . . p
(7.26)

In this case we have Y` = V` = W`, U =
∏p
`=1 Y`. Note that it would be rather

unrealistic to suppose even the excitability or transparency of each of the systems

ẋ = f(x, u), y` = h`(x), because the inputs and outputs might have been picked rather

artificially in order to study the effects of delays in a particular variable. Instead, we

assume that the closed loop system ẋ = f(x, y1, . . . yp) has a strongly connected digraph,

and that it is therefore strongly monotone, see [7]. We also assume that ẋ = f(x, u),

y` = h`(x) has non-idle inputs and outputs. A sign definite controlled system (7.24)

has non-idle inputs (outputs) if for every input variable ui (output variable yi) in the

digraph there exists some state variable xj s.t. there is a directed path from ui to xj

(a directed path from xj to yi). As for the systems ż` = g`(z`, v`), w` = H`(z`), we will

assume that for every input variable v`j there is a directed path from v`j to the output

w`j = v`j, and that there is one such path passing through each state variable z`i.

Proposition 9 Consider a monotone system (7.26) under the hypotheses in the para-

graph above, and let k0, k` be I/O characteristics of ẋ = f(x, u), ż` = g`(z`, v`) respec-

tively, ` = 1 . . . p. Let k`(v`) = v` for all `. Then (7.26) reduces to system (7.24).
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Proof. As in the proof of the previous theorem, it is easy to show that the characteristic

of system (7.26) is equal to that of (7.24), and so it has nondegenerate fixed points. To

check for nondegeneracy of the characteristic itself, we need to compute the determinant

of the linearization matrix, which is equal to

det
∂

∂x
f(x, u) · det

∂

∂z1
g1(z1, h1(x)) · . . . · det

∂

∂zp
gp(zp, hp(x)).

Evaluating at x = kX(u), z` = kZ`(k0(x)), ` = 1 . . . p and using nondegeneracy of each

subsystem’s characteristic, this implies this property for the cascade’s characteristic.

We argue now that the digraph associated with the cascade is strongly monotone.

Consider two state variables xi, xj . Since ẋ = f(x, y1, . . . yp) is strongly connected,

there exists a path from xi to xj that may cross through output variables y`1j1 , . . . y`pjp

and the corresponding input variables u`1j1 , . . . u`pjp. Given our assumption on the

controlled systems ż` = g`(z`, v`), w` = H`(z`), we can naturally extend this path so

as to lead from xi to xj in the closed loop of the cascade system. To go from xi to a

state z`q, find a path from some input v`p to z`q, and then by non-idleness of outputs

find a path from some xj to v`p. Finally, find a path from xi to xj as described above.

To find a path from a state z`q to other states in the digraph, follow a path from z`q to

some output w`p = uj , and from uj to some xi by non-idleness of inputs; then proceed

as before.

The last statement of the proposition is proved as in the preceeding theorem.

This result can be directly applied to insert pseudo-delays τ1, . . . τp in the system,

as in the following corollary.

Corollary 20 Consider a monotone sign definite system ẋ = F (x) whose digraph is

strongly connected. Let xi1 , . . . xip , xj1 , . . . xjp be states s.t. ∂
∂xi`

Fj`(x) 6= 0, ` = 1 . . . p,

and replace all appearances of xi` in fj`(x) by u`, to form the controlled system ẋ =

f(x, u), y` = h`(x) = xi`, ` = 1 . . . p. Suppose that this system admits an I/O charac-

teristic k0. Then the cascade (7.26) reduces to (7.24), where

τ`
L ˙z`1 = −z`1 + v`

τ`
L ˙z`i = −z`i + z`(i−1)

i = 2 . . . L, H`(z`) = z`L, ` = 1 . . . p,
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and τ`ż` = −z` + v`, H`(z`) = z` in the case L = 1.

Proof. The system ẋ = f(x, u) has non-idle outputs by definition, and non-idle inputs

since ∂
∂u`

fj`(x, u) 6= 0. The subsystems ż` = g`(z`, v`) are linear cascades with a single

input and a single output, and so they satisfy the condition imposed in the paragraph

above Proposition 9. Their I/S characteristic kZ`(v) = (v, . . . , v) is nondegenerate, and

their I/O characteristic is k`(v) = v. The results follow by applying Proposition 9.

7.6 Another Example

In order to illustrate the effect of delays inserted in the feedback loop, we study the

simplified Cdc2-cyclin B/Wee1 cell cycle model system from [5]2. This is just a two-

dimensional model, which may also be analyzed by routine phase plane techniques, and

it was used in that paper in order to relate input/output analysis based on monotone

systems to such more standard techniques. The equations are as follows:

ẋ1 = α1(1 − x1) −
β1x1u

γ1

K1 + uγ1

ẋ2 = α2(1 − x2) −
β2x2x

γ2
1

K2 + xγ21

(7.27)

x2 = y = u

with the constants:

α1 = α2 = 1, β1 = 200, β2 = 10, γ1 = γ2 = 4, K1 = 30, K2 = 1 .

This system is monotone, has a well-defined characteristic, and is strongly monotone

in closed loop. The characteristic is plotted in Figure 7.10, together with the diagonal

u = y. To find the steady states under unity feedback, we intersect the characteristic

and the diagonal u = y, and we find that there are two exponentially stable states in

closed loop, corresponding to u = y ≈ 0.168 and u = y ≈ 0.997. Associated to these

values there are the respective internal states

ξ1 = (0.995, 0.168) and ξ2 ≈ (0.136, 0.997)

2Section 5.6 of [101] can also be studied, at least in pseudo-delayed form, using Theorem 25.
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Figure 7.10: Characteristic for Cdc2-Wee1 Example, and Diagonal

to which all trajectories (except for those lying in a separatrix, the stable manifold of the

saddle point ξ3 ≈ (0.506, 0.619) associated to the intersection u = y ≈ 0.619) converge.

As an illustration, we show in Figure 7.11 the closed-loop trajectories (using u = y in

Equation (7.27) corresponding to initial conditions x1(0) = 0.8, x2(0) = 0.95. Next,

Figure 7.11: Closed-Loop Solution for Cdc2-Wee1 Example, x1(0) = 0.8, x2(0) = 0.95

we study the effect of adding to the feedback loop a cascade of simple one-dimensional

systems, which might represent delays due to unmodeled reactions. Thus, after closing

the loop under unity feedback, but now introducing these additional systems (so u = z2),
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we are led to consider the following four-dimensional system:

ẋ1 = α1(1 − x1) −
β1x1z

γ1
2

K1 + zγ12

, ẋ2 = α2(1 − x2) −
β2x2x

γ2
1

K2 + xγ21

τ

2
ż1 = −z1 + y ,

τ

2
ż2 = −z2 + z1 ,

where, for definiteness, we picked the same constants as earlier, and took the time-

constants as τ = 20. Notice that the system was still monotone before closing the loop

with u = z2, and the characteristic is unchanged. Thus there should be exactly two

steady states of this system, corresponding to ξ1 and ξ2, of the form (0.995, 0.168, z1
1 , z

2
1)

and (0.136, 0.997, z1
2 , z

2
2), which attract all trajectories except those starting from a set

of measure zero. As an illustration, we show in Figure 7.12 the closed-loop trajectories

of this extended system corresponding to initial conditions x1(0) = 0.8, x2(0) = 0.95,

z1(0) = z2(0) = 0 (we do not show the plots of the zi variables). The theory predicts

Figure 7.12: Closed-Loop Solution for “Delayed” Cdc2-Wee1 Example, x1(0) = 0.8,
x2(0) = 0.95, z1(0) = z2(0) = 0.

almost-global convergence to the same states ξ1, ξ2 as in the original system. However,

it is interesting to see that a different final state is reached asymptotically, for the

same initial conditions, compared to that shown in Figure 7.11. Instead of converging

towards ξ2 as in the case without delay, the solution converges now towards ξ1 due to

the “delay” imposed by the two z-systems.
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Chapter 8

Prevalence of Convergence

Let B be a separable Banach space, and consider a dynamical system

Φ(x, t) (8.1)

which is strongly monotone with respect to a closed cone K with nonempty interior. In

the paper [48], M. Hirsch addresses the question of the convergence of solutions towards

the set of equilibria E. Denote for this discussion the sets

B = {x ∈ X | the orbit x(t) has compact closure in X}

Q = {x ∈ X |ω(x) ⊆ E}

C = {x ∈ X |ω(x) = {e} for some e ∈ E}.

The elements of C are said to be convergent or to have convergent solution, and those

of Q are said to be quasiconvergent.

It was established in [48] that the generic element of B is quasiconvergent, where

the word ‘generic’ is made specific in two different senses: the topologic sense (B−Q is

meagre), and the measure theoretic sense (µ(B −Q) = 0 for any gaussian measure µ).

In the case that the set E is discrete, Hirsch’s theorem trivially implies the follow-

ing results: 1) the set C is also generic in B (since omega limit sets are connected

and therefore Q = C), and 2) if B = Rn, the generic solution converges towards an

equilibrium which is not exponentially unstable (since the basin of attraction of every

exponentially unstable equilibrium has measure zero and E is countable).

In the following writeup these two statements are generalized to the case of an

arbitrary equilibrium set (and arbitrary separable B). We have found the concept of

prevalence due to Yorke et al and Christensen [51, 17] to be a convenient measure-

theoretic way of formalizing the term ‘generic’ – see below for details. For the problem
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1) there is already a wealth of literature, especially a result proved first in [102] showing

that under relatively mild regularity conditions on the system, the set C has dense

interior. We show in Section 8.1 that if C is dense in B (topological genericity), then

C is prevalent in B (measure-theoretical genericity).

Let Tt : X → X be the time-t evolution operators of the system (8.1). We will

use the following stability notation in this chapter: let e ∈ E be an equilibrium of

this system, and let ρ(e, t) be the spectral radius of T ′
t (e). We say that e is linearly

stable if ρ(e, t) < 1 for all t > 0, linearly unstable if ρ(e, t) > 1, t > 0, and neutrally

stable if ρ(e, t) = 1, t > 0. Standard stability results imply that every equilibrium in

E satisfies one of these three conditions. Finally, define Es ⊆ E as the set of equilibria

that are either linearly stable or neutrally stable. Without making any assumptions on

topological genericity, we show in Section 8.2 that the set of states that converge to a

point in Es is prevalent in C.

8.1 C is Prevalent in B

In the context of autonomous strongly monotone systems, we say that an equilibrium

point e ∈ E is irreducible if for every t > 0, T ′
t (e) is a strongly monotone operator (i.e.

x > 0 implies T ′
t (e)x� 0). The point e is said to be non-irreducible otherwise.

A basic tool in abstract monotone systems theory is the so called limit set dichotomy

for strongly monotone systems: if x, y ∈ B and x � y, then either i) ω(x) � ω(y), or

ii) ω(x) = ω(y) ⊆ E. See Theorem 1.3.7 in [101]. In [102], Smith and Thieme found

sufficient conditions in Banach space for a strongly monotone system with precompact

orbits to satisfy a strengthened limit set dichotomy: if x, y ∈ B and x � y, then

either ω(x) � ω(y) or ω(x) = ω(y) = {e} for some e ∈ E. The sufficient conditions

for the stronger dichotomy are reviewed in [101] pp. 19-23, and involve the continuous

differentiability of the time evolution operators T (t), the nonexistence of non-irreducible

equilibria, and the compactness of the operators T ′(t).

Smith and Thieme then use this stronger dichotomy to show that int C is dense in

X, using additional hypotheses, such as the complete continuity of the operators T (t),
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the boundedness of O(R) for compact sets R, and the approximability of any state from

above or below by other states in X. See Theorem 2.4.7 of [101] for details and for a

more general set of hypotheses, in particular regarding the so-called condition (C).

One possible drawback of this result is that closed, nowhere dense subsets of X may

still be quite large in terms of measure. In fact, it is well known that one can partition

Rn into a set of measure zero and an countable collection of such sets (see for instance

Section 8 of [35]).

On the other hand, asking for a set to have measure zero in an infinite dimensional

space B is difficult to formalize, since there doesn’t exist a measure with the basic

properties of the Lebesgue measure in finite dimensions. A definition of ‘sparseness’

that turns out to be very useful in infinite dimensions is that of prevalence [51, 17]: a

set W ⊆ B is shy if there exists a compactly supported Borel measure µ on B, such that

µ(W + x) = 0 for every x ∈ B. A set is said to be prevalent if its complement is shy.

Given A ⊆ B, we also say here that a set W is prevalent in A if A−W is shy. Useful

properties of the idea of prevalence are given in [51]. Most importantly in the current

paper, a shy set has empty interior, and in finite dimensions W is shy if and only if W

has Lebesgue measure zero.

Define for any set A ⊂ X the strict basin of attraction

SB(A) := {x0 ∈ X |ω(x0) = A and x ∈ B }.

Note the difference with the usual basin of attraction of A, B(A) = {x ∈ X |ω(x) ⊆ A}.

Given v ∈ B, v 6= 0, we define the Borel measure µ(v) on B to be the uniform measure

supported in the set {tv |0 ≤ t ≤ 1}. That is, µ(v)(A) = m{t ∈ [0, 1] |tv ∈ A}, where m

is the Lebesgue measure in [0, 1]. The proof of Hirsch’s generic convergence theorem as

stated in terms of prevalence becomes clear at this point. See Theorem 4.4 of [48], and

[49].

Theorem 26 Let B be a separable Banach space, and consider a strongly monotone

system defined on X ⊆ B. Then Q is prevalent in B.

Proof. Let N be the set of states x ∈ B such that ω(x) 6⊆ E. Let L ⊆ X be a straight

line that is ordered under �. Note that if x, y ∈ L ∩ N , x � y, then ω(x) � ω(y),
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since otherwise ω(x) = ω(y) ⊆ E by the limit set dichotomy. Also, ω(x) must have

more than one element (otherwise x must converge towards this element, which would

necessarily be an equilibrium).

We can apply an argument as in Theorem 7.3 c) of Hirsch [49] to conclude that

N ∩ L is countable: consider the set Y = ∪x∈N∩Lω(x) with the topology inherited by

B. Since no point in an omega limit set ω(x) can bound ω(x) from below or above

(Theorem 6.2 in [49]), no point in ω(x) can be the limit of elements in ω(y), y 6= x.

Therefore ω(x) is open in Y , for every x ∈ N ∩L. The result follows by the separability

of Y .

Consider now v � 0 and the uniform measure µ(v) supported in Sv = {tv | 0 ≤ t ≤

1}. Let L = Rv − x for an arbitrary x ∈ B. Then

(N + x) ∩ Sv ⊆ (N + x) ∩ Rv = (N ∩ L) + x.

Therefore clearly µ(v)(N + x) = 0, and we have proven that N is shy with respect to

µ(v).

Theorem 27 Let B be a separable Banach space, and let X be the closure of a convex

open set. If C is dense in B, then C is prevalent in B.

Proof. Let K be the set of the states x ∈ B such that |ω(x)| > 1, and SB(ω(x)) has

empty interior. We will show that K is shy with respect to the measure µ(v), for every

v � 0.

Let L be a strongly ordered straight line onX, and consider the function γ : L∩K →

P(X) defined by γ(x) = ω(x). Then this function is injective: indeed, if x, y ∈ L ∩K,

x � y, where such that γ(x) = γ(y) = W , then W ⊆ E and ω(z) = W for any

z ∈ (x, y) ∩ X by the limit set dichotomy. But this implies that W has nonempty

interior, which is a contradiction with the fact that SB(ω(x)) is shy.

Note also that the image of γ is a strongly ordered collection of sets, again by the

limit set dichotomy. That is, if x� y then γ(x) � γ(y). Following the same argument

as in the proof of Theorem 26, one proves that K is shy with respect to µ(v), for any

v � 0.
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Let x ∈ B be such that |ω(x)| > 1. Then SB(ω(x)) has empty interior, from the

fact that C is dense in B. Therefore x belongs to the shy set K.

On the more technical side, it needs to hold that the sets N and K involved in the

proofs of the theorems above are Borel measurable in B. For the sake of completeness

this is done in the appendix.

Note that one can write the set K in the above proof in the form

K =
•⋃

{SB(A) | |A| > 1, SB(A) nonempty with empty interior}. (8.2)

From the fact that K is shy, one may be tempted to conclude that such sets A must

be relatively sparse in X. But it is possible even in finite dimensions for a strongly

monotone system to have a continuum of pairwise disjoint sets Ai whose union is con-

nected, and each of which satisfies the condition in equation (8.2). To see this, simply

build a (not necessarily monotone) 3-dimensional system with such property, and apply

on this system Smale’s construction to form a strongly monotone 4-dimensional system

with the same property; see [50]. Even in this case the basin B(
⋃
iAi) is a shy set, since

it is contained in K.

The following lemma helps to visualize the behavior of nonconverging bounded

orbits.

Lemma 40 Let A ⊆ X be such that |A| > 1 and SB(A) 6= ∅. Then the following hold:

1. No two different elements in A are comparable under ≤.

2. No two different elements a ∈ A, x ∈ BS(A) are comparable under ≤.

3. If SB(A) has nonempty interior, then A ⊆ E.

In the finite dimensional case, if m(SB(A)) > 0, then the set SB(S) has nonempty

interior in X and lim
x→∞

x′(t) = 0, x(t) = x(t, x0).

Proof. Item 1. follows from Theorem 6.2 b) in [49]. If a ∈ A and x ∈ BS(A), then a 6= x,

since otherwise ω(x) = {a} 6= A. If x > a, then x(1, a) � a and a contradiction follows

easily using the limit set dichotomy. Item 3 also follows directly from the dichotomy.
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To show the last statements, we find x, y ∈ SB(A) such that x � y. Suppose that

no such two elements exist, and let L be a strongly ordered straight line in Rn. Then

L∩SB(A) has at most one element. By Fubini’s theorem it follows that m(SB(A)) = 0,

which is a contradiction. As for the last assertion, we observe that for any x0 ∈ SB(A)

lim
t→∞

dist(x(t, x0), A) = 0,

and we use the continuity of the function f , together with the fact that A ⊆ E.

8.2 Cs is Prevalent in C

paragraphHypotheses In this section we will assume that B is a separable Banach space,

that system (8.1) is a strongly monotone C0 semigroup, and that its time evolution

operators are compact and (Frechet) C1, and that their derivatives are compact. As to

the underlying cone K, we assume that it is closed and has nonempty interior. Regarding

the setX, we will assume that every element can be approximated from below and above

by elements of X in the sense of [101], and that for every x, y ∈ X, x � y, it holds

that X ∩ (x, y) has nonempty interior.

We turn our attention to the convergence of solutions towards equilibria in Es for

arbitrary E. More precisely, defining

Cs = {x ∈ C | lim
t→∞

x(t) ∈ Es},

we will show that under an irreducibility condition, it holds that Cs is prevalent in C. If

the set of equilibria E is discrete, this follows in finite dimensions from the fact that in

a neighborhood of the equilibrium, its basis of attraction is a manifold with dimension

at most n-1, together with the principle of nonintersecting orbits.

This section is independent of the previous one, but a natural conclusion will follow

from the two in Corollary 21.

Let x ∈ X and let C,D ⊆ X. The relation x� D will denote that x� d for every

d ∈ D, and the relation C � D will denote c � d for all c ∈ C, d ∈ D. We state first

two general lemmas which are not specific to monotone systems.
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Lemma 41 Let T : X → X be a continuous (nonlinear) operator. Let e ∈ X be a fixed

point of T , and assume that the Frechet derivative T ′(e) : T → T exists and is compact.

Assume also that there exists a sequence e1, e2, . . . of fixed points of T , ek 6= e, such

that ek → e as n→ ∞.

Then the unit vectors vk := (ek − e)/ |ek − e| have a subsequence that converges

towards a unit vector w ∈ B, and T ′(0)w = w.

Proof. Let ε > 0, and let A := T ′(e). We will show that there exists a subsequence (vkj
)

such that

|vki
−Avki

| < ε,
∣∣vki

− vkj

∣∣ < 3ε, for all i, j.

Once this has been shown, by setting ε = 1/n, n = 1, 2, 3 . . . and following a diagonal

argument, it follows that there exists a subsequence (ui) of (vk) which is Cauchy, and

such that |ui −Aui| → 0. Letting w = lim ui, clearly w is a unit vector, and it must

follow that Aw = w.

In order to prove the statement above, let N be such that

|T (en) − T (e) −A(en − e)| < ε |en − e| , n ≥ N.

Such a number can be found using the definition of the Frechet derivative of T at e.

Using the fact that e, en are fixed points of T , and dividing on both sides by |e− en|,

we obtain

|vn −Avn| < ε, n ≥ N. (8.3)

By compactness of A, it holds that the sequence AvN , AvN+1, AvN+2 . . . is precompact,

and therefore it has a Cauchy subsequence Avk1 , Avk2 , etc. We can assume without loss

of generality that in fact
∣∣Avki

−Avkj

∣∣ < ε, for all i, j. Using the triangle inequality

and (8.3), it follows that
∣∣vki

− vkj

∣∣ < 3ε. This completes the proof.

Lemma 42 Let S ⊆ X be uncountable. Then there exists a ∈ S that is an accumulation

point of S.

Proof. Suppose that the statement is false. Then for every a ∈ S there exists an open

ball of radius r(a) around a which doesn’t intersect any other point of S. By surrounding
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each a ∈ S with an open ball of radius r(a)/2, we find a uncountable collection of open

balls that are pairwise disjoint, a contradiction by the separability of B.

The following two results will lead up to Theorem 28 on the convergence of solutions

towards unstable equilibria, which is similar to Theorem 4.4 in [48] in finite dimensions,

and to a lesser extent to Theorem 10.1 in [49]. It drops the assumptions of finiteness

or discreteness for the set E. We will use the following property in what follows.

(P) Every set of equilibria Ê ⊆ E which is totally ordered by � has at most enumer-

ably many non-irreducible points.

For instance, this condition holds if all equilibria in X are irreducible (condition

(S) in [101], p. 19). It also holds if every totally �-ordered subset of X has at most

enumerably many non-irreducible points. A common example is also the case X =

(R+)n, ordered by an orthant cone, when all non-irreducible points are in ∂X.

Lemma 43 If (ek)k∈N is a sequence of equilibria of the system (8.1) such that ek �

ek+1 (ek � ek+1) for all k, and if the sequence (ek) converges towards a irreducible

equilibrium e ∈ E, then e ∈ Es.

Proof. Let T = T1 be the time evolution operator of the system after one unit of time.

Then T satisfies the hypotheses of Lemma 41, so that defining vk = (ek − e)/ |ek − e|,

there exists a subsequence vki
which converges to a unit vector w ∈ B. Furthermore,

T ′(e)w = w. From the fact that e� ek for every k, we conclude that vk � 0 for all k,

and that therefore w > 0.

By the nondegeneracy of the point e, the linear operator T ′(e) is strongly monotone.

By the Krein Rutman theorem, the fact that T ′(e) has a positive eigenvector with

eigenvalue 1 implies that in fact ρ(T ′(e)) = 1. By the spectral mapping theorem for C0

semigroups (see [87], Theorem 2.2.4), the stability modulus of L′(e) is equal to zero. In

particular, e ∈ Es, and this concludes the proof.

The case ek+1 � ek for every k ∈ N can be treated similarly.

Lemma 44 Let property (P) be satisfied. If Ê ⊆ E is totally ordered by �, and if

every element of Ê is linearly unstable, then Ê is countable.
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Proof. Suppose that Ê is not countable. Then the set Ẽ ⊆ Ê of irreducible elements

in Ê is also uncountable, by property (P). Let e ∈ Ẽ be an accumulation point of Ẽ,

which exists by Lemma 42. Then there exists a monotone sequence of elements in Ẽ

which converges towards e. By the previous lemma it holds that e ∈ Es, thus violating

the assumptions.

Lemma 45 Let B be a separable Banach space, and let system (8.1) be strongly monotone.

Let e ∈ E be a linearly unstable equilibrium such that Tt is C1 in a neighborhood Ut of

e and T ′
t (e) is compact, t > 0. Then the basin of attraction of e is shy.

Proof. The proof follows the same argument as Lemma 2.1 in [103]: suppose that there

exist x, y ∈ B(e) with x < y. Then (x(t), y(t)) is a nonempty open set contained in

B(e) for every t > 0 by strong monotonicity. But locally around e, B(e) has the form

of a manifold with codimension larger or equal than 1, which is a contradiction (see

Lemma 2.1 in [103] for details). It follows that no two elements in B(e) can be ordered

by <, which implies that this set is shy with respect to µ(v) for every v > 0.

Theorem 28 Let property (P) be satisfied, and let system (8.1) have C1, compact time

operators with compact derivatives. Let X be the closure of a convex open set. Then

Cs is prevalent in C.

Proof. We follow a very similar argument as in the proof of Theorem 26. Let N be

the set of x0 ∈ C such that x0 converges towards a linearly unstable equilibrium. Let

v � 0, x ∈ B be fixed, and let L = {rv + x | r ∈ R}. Then we can define the function

σ : L∩N → X by σ(x0) = limt→∞ Φ(x0, t). If x1, x2 ∈ L∩N , x1 � x2, then necessarily

σ(x1) 6= σ(x2), since otherwise [x1, x2] ∩X ⊆ SB(σ(x1)), thus violating that the basin

of attraction of σ(x1) has nonempty interior by Lemma 45. Also note that Ê = range σ

is totally ordered by �. Therefore by Lemma 44 Ê is countable, and so is L ∩ N by

injectivity. The rest of the argument follows as in Theorem 26 and Theorem 27.

See also Theorem 4.4 and Theorem 4.1 of [48].
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Corollary 21 Let system (8.1) have C1, compact time operators with compact deriva-

tives. Let O(R) be bounded for every bounded R ⊆ B. Let also B = X, and let all the

equilibria of the system be irreducible. Then Cs is prevalent in X.

Proof. From the discussion in [101], pp 19-23, it follows that int C is dense in B = X.

The result then follows from Theorem 27 and Theorem 28.

8.3 Applications to Reaction-Diffusion Systems

Consider a reaction-diffusion system of equations

u̇ = D∆u+ f(u) (8.4)

under Neumann boundary conditions, defined on the state space C(Ω,Rn). Kishimoto

and Weinberger [59] showed that if Ω is a convex domain, and assuming that ∂fi/∂xj >

0 for all i, j, then any nonconstant equilibrium u is linearly unstable. A careful reading

of the proof in that paper will show that in fact it is sufficient that ∂fi/∂xj > 0 for

all i, j and every equilibrium e ∈ E is irreducible. By making a change of variables,

the same is true for any system which is strongly monotone with respect to an orthant

cone and in which all equilibria are irreducible.

On the other hand, elliptic systems such as D∆u+ f(u) = 0 are known for having

multiple and sometimes unexpected solutions. Not only is it possible for a strongly

monotone reaction diffusion system to have several non-uniform equilibria, but it is

in fact possible that there is a continuum of them. In Section 12.1, we consider this

question at length by providing a two-dimensional reaction diffusion system with a

continuum of nonhomogeneous equilibria, but whose associated undiffused system con-

verges globally towards an equilibrium. The question arises as to whether the basin of

attraction of the set of all unstable equilibria can possibly have a basin of attraction,

say, with nonempty interior.

Lemma 46 Let W ⊆ Rn be a vector space, and let u : Ω → Rn be twice differentiable

and such that Im u ⊆W + p for some p ∈ Rn. Then ∆u(x) ∈W , for every x ∈ Ω.
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Proof. The proof of this lemma is an exercise in change of variables. Let B1 be the

standard basis in Rn, and let B2 be a second basis. Let M be their associated change

of basis matrix, so that if [s]B1 , [s]B2 are the representations of s ∈ Rn with respect

to the indicated basis, it holds that [s]B2 = M [s]B1 . Define v(x) := [u(x)]B2 = Mu(x).

To see that ∆u is independent of the choice of basis, observe that it can be written

as ∆u = u · (1, . . . , 1) · ∂2, where ∂2 = (∂2/∂x2
1, . . . ∂

2/∂x2
m)t. Thus ∆(v) = ∆(Mu) =

(Mu) · (1, . . . , 1) · ∂2 = M∆(u).

Choose the basis B2 in such a way that the first dimW basis vectors are a basis of

W . Clearly v is a constant function in its last n − dimW entries, so that ∆v = 0 in

these entries. Since ∆u = M−1∆v, the conclusion follows that ∆(u)(x) ∈ W for all x.

The following proposition is an adaptation of Smale’s argument (see [50]) for reaction

diffusion systems.

Proposition 10 Let Σ := {x ∈ Rn |
∑

i xi = 0}, and let f : Σ → Σ be a compactly

supported C1 function. Then there exists a strongly cooperative reaction-diffusion sys-

tem

u̇ = ∆u+ F (u) (8.5)

in which Σ is an invariant subset, and such that F |Σ = f .

Proof. Define S(x) :=
∑

i xi, x ∈ Rn. Let Q be a fixed constant to be determined later

on. Let p : R → [0, 1] be a smooth function supported on [−1, 1], and such that p ≡ 1

on a neighborhood of 0. Define

Fi(x) := QS(x) + p(S(x))fi(x), i = 1 . . . n.

Then for every i, j = 1 . . . n,

∂Fi
∂xj

= Q+ p′(S(x)fi(x) + p(S(x)
∂fi
∂xj

.

It is also clear that Fi = fi on Σ for every i. Now, note that ∂Fi
∂xj

is a continuous function

which is compactly supported, for every i, j. Therefore one can choose Q to be large

enough so that ∂Fi
∂xj

> 0 for all i, j, thus making (8.5) into a strongly cooperative system.



154

Since for every u : Ω → Σ, it holds that ∆u+ F (u) = ∆u+ f(u) ∈ Σ, by Lemma 46, it

follows that Σ is an invariant subset of system (8.5).

Armed with this proposition, one can build the example given above: let f : Rn−1 →

Rn−1 be a function, not necessarily monotone, whose associated system (8.4), with D =

I and under Neuman boundary conditions, has a continuum of non-uniform equilibria.

Redefine f so that its domain is Σ, via a rigid linear transformation Rn−1 → Σ, and

extend it using Proposition 10. An argument similar to that in Lemma 46 will guarantee

that the solutions of the system are in fact identical to those of system (8.5) in Σ. We

write this result in the following

Corollary 22 There exists a strongly cooperative reaction diffusion system (8.4) with

a continuum of non-uniform equilibria.

Even in this case, it is hard a priori to tell whether the set of states that converge

towards an unstable equilibrium – or to a set of equilibria containing a non-uniform

equilibrium – is sparse (note that for instance u may cross Σ in one or several places).

The following application of Corollary 21 resolves this question in the general case.

Theorem 29 Let (8.4) be such that f is C1, ∂fi/∂xj > 0 for every i, j, the solutions

of (8.4) are uniformly bounded, and Ω is convex. Then the set of initial conditions that

converge towards a uniform equilibrium is prevalent in C(Ω,Rn).

Proof. We need to show that all the general assumptions of the previous section are

satisfied, as well as the hypotheses of Corollary 21. Clearly C(Ω,Rn) is a separable

Banach space under the uniform norm. The fact that the time evolution operators

form a C0 semigroup of compact operators with compact derivatives is well known in

the literature; see for instance [87]. The assumptions on the cone K = (R+)n in question

are easily seen to be satisfied. Similarly for the set X = B = C(Ω,Rn). The fact that

B = X follows for instance from Theorem 7.3.1 in [101]. To see that the system has

no non-irreducible equilibria, let û be an equilibrium of the system, and recall that the

linearization around û is of the form

u̇ = D∆u+M(x)u,
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where M(x) = ∂f/∂u(û(x)). According to Theorem 7.4.1 of [101], to prove that this

system is strongly monotone it is enough to verify that the associated finite-dimensional

system with no diffusion is monotone for every fixed value of x ∈ Ω, and strongly

monotone for at least one value of x. But by hypothesis M(x) has only positive entries,

and therefore this condition holds.

By Corollary 21, it holds that Cs is prevalent in B = X. But by the main theorem in

[59], any initial condition in Cs has a solution which converges towards an equilibrium

which is uniform in space. This completes the proof.

8.4 An Application: Monomial Chemical Reactions

As an application of Corollary 21 we consider the class of monomial chemical reactions.

Let A1, . . . , An be n chemical compounds (also known as species), and consider a set of

reactions of the form

αijAi
kij−→ βijAj.

That is, we let one compound react and transform itself into another, possibly after

making αij-mers of itself and/or splitting itself into βij equal parts. Assuming mass

action kinetics, the reaction rate of each such reaction is kijA
αij

i . We will also assume

that the reaction diagram (using the compounds as nodes and Ai → Aj if this reaction

takes place) is strongly connected. Note that we don’t assume that the reaction diagram

doesn’t contain closed cycles, nor that every reaction must be reversible. For an excellent

treatment of chemical reactions from a mathematical viewpoint, the reader is referred

to [113], Chapter 8. For similar results to the ones here, see [75].

The associated dynamical system is strongly monotone, and if we view it as taking

place in the state space (0,∞)n, it holds that the Jacobian matrices associated to

each state are irreducible. The associated vector field is C1, and all states can be

approximated from above or below in the sense of pp. 19-23 [101]. Furthermore,

the solutions can be shown to be bounded - in fact, each orbit can be shown to have

compact closure in (0,∞)n. We can therefore conclude that the set C has dense interior
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in (0,∞)n, by the discussion in [101]. If we now extend the state space to X = (R+)n,

this property certainly continues to hold. We can now invoke Corollary 21 to conclude

the following result:

Lemma 47 Given a strongly connected monomial reaction, and for almost every initial

condition x ∈ (R+)n, the solution of the system converges to an equilibrium.

Thus if a chemical reaction is modeled with such a system in the laboratory, no

non-converging solutions are ever likely to be observed.

Now, chemical reactions often have so-called conservation laws, i.e. linear relation-

ships between the different species that are preserved by the dynamics. In other words,

there are r-dimensional hyperplanes whose intersection with X is invariant for the sys-

tem. We will assume that r is minimal with this property, i.e. that there are n − r

independent conservation laws.

It is common to reduce the system by making a change of variables so that only r

variables are left — but after making this reduction it is not guaranteed that monotonic-

ity will be preserved. Our approach here is to use the monotonicity properties of the

reaction before carrying out the reduction.

Let ∆ ⊆ Rn be an r-dimensional linear subspace such that ∆t := (∆+(t, t, . . . t))∩X

is invariant for every t ≥ 0. It can be shown that for every t ≥ 0, ∆t is a bounded set,

and that no two elements in ∆t are comparable under ≤.

Theorem 30 Consider a strongly connected monomial reaction. Then for every t ≥ 0,

there exists a unique equilibrium et ∈ ∆t. Moreover, for almost every t ≥ 0, almost

every solution in ∆t converges towards et.

Proof. Let S = CC . By Fubini’s theorem it holds that

∫

X
χ(S) dm =

∫ ∞

0

∫

∆t

χ(S ∩ ∆t) dt.

Since the left hand side is equal to zero, this implies that for almost every t ≥ 0, S∩∆t

has measure zero in the r-dimensional sense. Therefore for almost every t ≥ 0, almost

every state in ∆t has a solution which converges to an equilibrium.
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We restrict our attention again to the state space (0,∞)n, and we let ∆′
t := ∆ ∩

(0,∞)n, which are also invariant sets under the system as mentioned above. Let t > 0,

and consider Et = E ∩ ∆t. By the strong monotonicity of the system, no equilibrium

can lie on ∂∆t, so that Et ⊆ ∆′
t.

Consider an equilibrium e ∈ Et which is an accumulation point of Et. Using an

argument like that in Lemma 7 and Lemma 9, it follows that there exists a nonzero

vector v ∈ ∆ such that f ′(e)v = 0. But this is a contradiction by the Perron Frobenius

theorem since the only eigenvector of f ′(e) modulo renormalization must be � 0. We

conclude that the set Et is discrete in ∆t.

Now, suppose that |Et| > 1 and let e1, e2 ∈ Et be two different discrete equilibria of

Et. Then there must exist at least one equilibrium in ∆′
t which is unstable in ∆′(t). But

this is a contradiction since 0 is the leading eigenvalue of each equilibrium. Therefore

|Et| ≤ 1 for all t > 0. But |Et| > 0 for almost every t > 0 by the argument above.

Therefore by continuity of the vector field |Et| = 1 for every t > 0.

Example

Consider a molecule A which dimerizes to form B, which in turn forms a trimer C.

Let C transform into either D or E via, say, the binding of one out of two different

residues at the same site. See Figure xxx for a diagram. We will assume that the

inverse transformations D → C, E → C, C → 2B and B → 3A also take place. The

resulting equations are of the form

ȧ = 2k1b− 2α(a)

ḃ = −k1b+ α(a) − 3γ(b) + 3k2(c)

ċ = γ(b) − k2(c) + k3d− η(c) + k4e− τ(c)

ḋ = −k3d+ η(c)

ė = −k4e+ τ(c),

where a, b, c, d, e stand for the concentrations of the respective compounds, k1 . . . k4 are

positive constants, and α(a) = const.a2, γ(b) = const.b3, η(c) = const.c and τ(c) =

const.c. We reduce the system by defining the new variables x = 1
6a, y = 1

6a + 1
2b,
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z = 1
6a+ 1

2b+ c, p = 1
6a+ 1

2b+ c+ d, q = 1
6a+ 1

2b+ c+ d+ e = const. In terms of the

new variables, the system takes the form

ẋ = k1
3 (y − x) − 1

3α(x)

ẏ = −1
2γ(y − x) + k2

2 (z − y)

ż = −η(z − y) + k3(p− z) − τ(z − y) + k4(q − p)

ṗ = −τ(z − y) + k4(q − p).

(8.6)

This system is not monotone with respect to any orthant cone, for any positive

choice of the constants, because of the (undirected) chain between y, p and z which has

negative parity (in fact, this system may not even be sign definite — see for instance [6]

or [30] for details). Note that every given value of the constant q will fix a hyperplane

for the dynamics of the system. Now, after setting (8.6) equal to zero, and assuming

without loss of generality that k1 = 1, . . . , k4 = 1 (otherwise one can redefine α(a),

etc.), one can write

y = α(x) + x

z = α(x) + x+ γ(α(x))

p = α(x) + x+ γ(α(x)) + η(γ(α(x)))

τ(γ(α(x))) = q − (α(x) + x+ γ(α(x)) + η(γ(α(x)))).

It is easy to see from the fourth equation (using the monotonicity of the functions

α, γ, η, τ) that for every fixed q there exists a unique value of x that satisfies it, and

therefore a unique tuple x, y, z, p that is an equilibrium of the reduced system. This

was in fact predicted by the previous theorem. We can conclude that for almost every

q, almost all solutions of (8.6) converge towards the unique equilibrium, even though

(8.6) is not itself a monotone system.

8.5 Regarding Measurability

It is worth noting that in order to apply measure-theoretic arguments on the different

main results, one needs to prove first that the sets in question are Borel measurable.

One way to do this is as follows: let D ⊆ X be a closed set in X and r ∈ R+, and
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consider the set

W (D, r) = {x ∈ X |x(t) ∈ D, for all t ≥ r} =
⋂

q∈Q, q>r
T (q)−1(D),

where T (t) is the time t evolution operator of system (8.1). The equality holds clearly

from the continuity of the solutions. Since each operator T (q) is continuous, it holds

that W (D, r) is a measurable set.

We can use these sets to describe the set of solutions having a certain behavior. For

instance, ∪k∈NW (B(k) ∩X, 0) is the set of states with bounded solutions, where B(k)

is the closed ball or radius k around the origin. Given a set A ⊆ X and ε > 0, let

Aε = {x ∈ X | d(A, x) ≤ ε},

which is a closed set by continuity of the function d(·, A). Then we can write

C(A) = {x ∈ X | lim
t→∞

d(x(t), A) = 0} =
⋂

m∈N

⋃

k∈N
W (A 1

m
, k).

Finally, note that for any closed set D ⊆ X and for any x ∈ X, it holds that

ω(x) ⊆ D ⇔ lim
t→∞

d(x(t),D) = 0.

Thus since the set E of equilibria of (8.1) is closed, it holds that

Q = {x ∈ X |ω(x) ⊆ E} = C(E)

is a measurable set. If B is itself Borel measurable, it follows that N = B − Q is

measurable.

Let A ⊆ B be compact. In order to show that SB(A) is Borel measurable, recall

that for every ε > 0, there exists a finite collection of open balls of radius ε which cover

A. Let {Ri}i∈I be the union of such collections, for ε = 1/n, n = 1, 2, 3 . . .. Then the

set
⋃
i∈IW (RCi , 0) consists of the vectors x ∈ X such that a 6∈ ω(x) for some a ∈ A.

Consequently,

SB(A) = C(A) −
⋃

i∈I
W (RCi , 0),

and this set is also Borel measurable.
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Chapter 9

Monotone Decompositions

9.1 Decompositions Revisited, and Consistent Sets

In Section 5.3, it was described how an arbitrary sign-definite dynamical system can

be decomposed as the negative feedback loop of a monotone controlled system under

negative feedback. To do this, the associated signed digraph G was considered, and a

minimal number of edges was removed so that the remaining digraph didn’t contain any

(undirected) loops with negative parity. A systematic way of doing this was to partition

the set of nodes into two antagonistic sets via a function p : V (G) → {−1, 1} and to

eliminate exactly those edges (i, j) ∈ G that were ‘inconsistent’ or ‘discordant’, i.e. such

that sign(i, j)p(i)p(j) = −1. The main objective was therefore to find a partition p so

that as few as possible discordant edges are present (since each discordant edge will

become an input in the reduced system). The second objective was to do so in such a

way that as few as possible positive loops remain (so that the open loop system will be

easy to study for each fixed value of the input).

It is useful to recall as an example at this point the model considered in Chapter 2,

in non-delayed form (the delay system can be treated similarly for the purpose of this

argument):

ẋ1 = A
K + x3

− b1x1

ẋ2 = c1x1 − b2x2

ẋ3 = c2x2 − b3x3.

(9.1)

By drawing the digraph of this system, it is easy to see that it is not monotone with

respect to any orthant order, by Lemma 9. But replacing x3 in the first equation by u,

we obtain a system that is monotone with respect to the orders ≤(1,1,1), ≤(−1) for state
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and input respectively. Defining h(x) = x3, the closed loop system of this controlled

system is none other than (9.1).

We recall the procedure for an arbitrary system (1.1) with a directed graph G:

given a set E of edges in G, enumerate the edges in EC as (i1, j1), . . . (im, jm). For

every k = 1 . . . m, replace all appearances of xik in the function Fjk by the variable uk,

to form the function f(x, u). Define h(x) = (xi1 , . . . xim). It is easy to see that this

controlled system (1.2) has closed loop (1.1) (Theorem 16).

Note that the controlled system (1.2) generated by the set E as above has, as

associated digraph, the subdigraph of G generated by E. This is because for every k,

one has ∂fjk(x, u)/∂xik ≡ 0, i.e. the edge from ik to jk has been ‘erased’.

If Rn,Rm are ordered by orthant orders ≤p, ≤q respectively, a controlled system

ẋ = f(x, u), y = h(x) (9.2)

is monotone with respect to ≤p, ≤q if and only if

p(i)p(j)
∂fi
∂xj

≥ 0

for every i 6= j (see Section 3.2) and

q(k)p(j)
∂fj
∂uk

≥ 0, for every k, j. (9.3)

The latter equation simply ensures that the function u→ f(x, u) is increasing on u for

every fixed x.

Let the set E be called consistent if the undirected subgraph of G generated by E

has no closed chains with parity −1. Note that this is equivalent to the existence of a

function p with respect to which every edge in E is consistent, by Lemma 48 applied

to the open loop system (1.2). If E is consistent, then the associated system (1.2)

itself can also be shown to be monotone: to verify condition (9.3), simply define each

q(k) so that (9.3) is satisfied for k, jk. Since ∂fjk/∂uk = ∂Fjk/∂xik 6≡ 0, this choice

is in fact unambiguous. Conversely, if (1.2) is monotone with respect to the orthant

orders ≤p, ≤q, then in particular it is monotone for every fixed constant u, so that E

is consistent by Lemma 9. We thus have the following result1.

1A natural problem is therefore the following. Given a dynamical system (1.1) that admits a digraph
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Lemma 48 Let E be a set of edges of the digraph G. Then E is consistent if and only

if the corresponding controlled system (1.2) is monotone with respect to some orthant

orders.

The following proposition describes a way to write a sign definite system as the

closed loop of a controlled monotone system with a negative feedback function. Let

(C,⊆) be the class of consistent subsets of E(G), ordered under inclusion.

Proposition 11 Let E be a consistent set. Then E is maximal in (C,⊆) if and only if

h is a negative feedback function for every p such that E is consistent with respect to p.

Proof. Suppose that E is maximal, and let p be such that E is consistent with respect

to p. Given any edge (ik, jk) ∈ EC , it holds that f(ik, jk) = −1. Otherwise one could

extend E by adding (ik, jk), thus violating maximality. That is, p(ik)p(jk)sign(ik, jk) =

−1. By monotonicity, it holds that q(k)p(jk)∂fjk/∂uk ≥ 0, and since ∂fjk/∂uk =

∂Fjk/∂xik , it follows necessarily that q(k)p(jk)sign(ik, jk) = 1. Therefore it must hold

that q(k) = −p(ik) for each k, which implies that h is a negative feedback function.

Conversely, if p is such that E is consistent with respect to p and h is a negative feed-

back function, then q(k) = −p(ik). By the same argument as above, q(k)p(jk)sign(ik, jk) =

1 for all k by monotonicity. Therefore no edge in EC is consistent with respect to p.

Repeating this for all admissible p, maximality follows.

There is a second, slightly more sophisticated way of writing a system (1.1) as the

feedback loop of a system (1.2) using an arbitrary set of edges E, which can potentially

lead to the use of fewer input variables. Given any such E, define

S(Ec) = {i | there is some j such that (i, j) ∈ Ec}.

Now enumerate S(Ec) as {i1, . . . im}, and for each k label the set {j | (ik, j) ∈ Ec} as

jk1, jk2, . . .. Then for each k, l, one can replace each appearance of xik in Fjkl
by uk,

G, use the procedure above to decompose it as the closed loop of a monotone controlled system (1.2),
while minimizing the number

∣∣EC
∣∣ of inputs. An implementation of this problem is discussed in

Section 9.1.
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to form the function f(x, u). Then one lets h(x) = (xi1 , . . . , xim) as above. The closed

loop of this system (1.2) is also (1.1) as before but with the advantage that there are

|S(Ec)| inputs, and of course |S(Ec)| ≤ |Ec|.

If E is a consistent and maximal set, then one can make (1.2) into a monotone

system as follows. By letting p be such that E is consistent with respect to p, we

define the order ≤p on Rn. For every ik, jkl such that (ik, jkl) ∈ EC , it must hold

that p(ik)p(jkl)sign(ik, jkl) = −1. Otherwise E ∪ {(ik, jkl)} would be consistent, thus

violating maximality. By choosing q(k) = −p(ik), equation (9.3) is therefore satisfied.

See the proof of Proposition 11. Conversely, if the system generated by E using this

second algorithm is monotone with respect to orthant orders, and if h is a negative

function, then it is easy to verify that E must be both consistent and maximal.

9.2 A Semidefinite Programming Approach

For the remainder of this chapter, we will concentrate our attention on the first problem

described in the previous section, namely decomposing non-monotone systems as the

negative feedback loop of controlled monotone systems by finding a partition p of the

nodes and cutting all non-consistent edges forming an open loop system. We can refer

to the problem of finding a partition p that minimizes the number of non-consistent

edges as the undirected labeling problem, or ULP.

Professor Bhaskar DasGupta from the University of Illinois pointed out that this

problem is very similar to a classic problem in graph theory known as the MAX-CUT

problem: given an unsigned, undirected graph, find a partition p of the nodes into two

sets, such that the number of edges that connect both partition sets is maximized. In

fact, ULP reduces to MAX-CUT in the case where only negative edges are present

in G. An efficient algorithm is well known for the MAX-CUT problem, whose core

computational part can be reduced to a problem in semidefinite programming (SDP)

([36]; see also [111]). Professor DasGupta and his graduate student Yi Zhang then

generalized the algorithm in a straightforward manner so that it addresses the present

problem. The algorithm and the subsequent implementation are described below - the
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computer implementation and the analysis of two networks that follows was carried out

by myself. See also our article [20].

Recall that the subject of the field of linear programming is to find maxima or

minima of a scalar linear function s : D ⊂ Rk → R defined on a polyhedral domain D.

A common description of the domain D is

D = {x ∈ Rk |x ≥ 0, Ax = b},

where ≤ is the standard cooperative cone, and A, b are given.

The simplicity of the setup is misleading: many interesting and computationally

difficult (i.e. NP hard) problems can be rephrased into this framework, and if that is

the case they can be solved with a stunning computational efficiency.

Let x ∈ Rn2
, and let mat(x) be the n × n matrix composed by distributing the

entries of x in an n× n box in some fixed order. Let K be the cone of all x ∈ Rn2
such

that mat(x) is a symmetric, positive semidefinite matrix. In semidefinite programming

(SDP), a problem consists of maximizing or minimizing a scalar linear function s : D ⊆

Rn2 → R, where the domain D is described as

D = {x ∈ Rk |x ≥K 0, Ax = b},

for some given matrix A and vector b. Thus the domain of the linear functional can be

thought of as a restriction of the set of symmetric positive semidefinite matrices.

The following idea relates symmetric, positive semidefinite (psd) matrices to our

setup. It is a standard linear algebra result that a matrix Y is symmetric and psd

if and only if it can be written as Y = BtB, for some matrix B. Furthermore, the

matrix B in question consists of unit vectors if and only if all entries of the diagonal

of Y are equal to 1. Given a signed graph G with n vertices, let the unitary vectors

vi, . . . vn ∈ Rn represent each of the vertices 1, . . . n of G. We try to choose the vi so

that vi, vj are far apart if sign(i, j) = −1 and close together if sign(i, j) = 1. This

allows us to cluster the vectors geometrically into two groups, which induces naturally

a partition of V (G). Maximizing the function

s(v1, . . . vn) =
∑

sign(i,j)=1

vi • vj −
∑

sign(i,j)=−1

vi • vj
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over all collections of unitary vectors v1 . . . vn in Rn (or in any other Rm, for that

matter) will do. (The function for the MAX-CUT case involves only the second sum.)

Let B be formed by the column vectors v1, . . . vn. The equivalence mentioned above

shows that this is can be rephrased as the problem of maximizing

s(Y ) =
∑

sign(i,j)=1

aij −
∑

sign(i,j)=−1

aij

over all symmetric, positive definite matrices Y with diagonal entries equal to 1. For

some suitably chosen matrix A and vector b, this is a problem of the kind treated in

the SDP setup.

Once the vectors v1 . . . vn have been found, this standard algorithm calls for sepa-

rating them into two groups by choosing a random hyperplane that passes through the

origin. After doing this last step several times, the partition is chosen which induces

the least number of inconsistent edges.

9.3 Drosophila Segment Polarity

The SDP-based algorithm was implemented using Matlab, and it is illustrated with

two applications to biological systems. The first application concerns the relatively

small-scale 13-variable digraph of a model of the Drosophila segment polarity network.

The second application involves a digraph with 300+ variables associated to the human

Epidermal Growth Factor Receptor (EGFR) signaling network (this latter model was

published recently and built using information from 242 published papers).

An important part of the development of the early Drosophila (fruit fly) embryo is

the differentiation of cells into several stripes (or segments), each of which eventually

gives rise to an identifiable part of the body such as the head, the wings, the abdomen,

etc. Each segment then differentiates into a posterior and an anterior part, in which

case the segment is said to be polarized. (This differentiation process continues up to

the point when all identifiable tissues of the fruit fly have developed.) Differentiation at

this level starts with differing concentrations of certain key proteins in the cells; these

proteins form striped patterns by reacting with each other and by diffusion through the

cell membranes.
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Figure 9.1: A digram of the Drosophila embryo during early development. A part of
the segment polarization process is displayed. Courtesy of N. Ingolia and PLoS [53]

Figure 9.2: The network associated to the Drosophila segment polarity, as proposed in
[114], Courtesy of N. Ignolia and PLoS. The three edges that have been crossed have
been chosen in order to let the remaining edges form an orthant monotone system.
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A model for the network that is responsible for segment polarity [114] is illustrated

on Figure 9.2. As explained above, this model is best studied when multiple cells are

present interacting with each other. But it is interesting at the one-cell level in its

own right — and difficult enough to study that analytic tools seem mostly unavailable.

The arrows with a blunt end are interpreted as having a negative sign in our nota-

tion. Furthermore, the concentrations of the membrane-bound and inter-cell traveling

compounds PTC, PH, HH and WG(membrane) on all cells have been identified in the

one-cell model (so that, say, HH→ PH is now in the digraph). Finally, PTC acts on

the reaction CI→ CN itself by promoting it without being itself affected, which in our

notation means PTC +→ CN and PTC −→CI.

The Implementation

The Matlab implementation of the algorithm on this digraph with 13 nodes and 20

edges produced several partitions with as many as 17 consistent edges. One of these

possible partitions simply consists of placing the three nodes ci, CI and CN in one set

and all other nodes in the other set, whereby the only inconsistent edges are CL +→ wg,

CL +→ ptc, and PTC +→ CN. But note that it is desirable for the resulting open loop

system to have as simple remaining loops as possible after eliminating all inconsistent

edges. In this case, the remaining directed loops

EN −→ ci +→ CI +→ CN −→ en +→ EN

EN −→ ci +→ CI +→ CN −→wg +→ WG +→ WG(membrane) +→ en +→ EN

can still cause difficulties.

A second partition which generated 17 consistent edges is that in which EN, hh,

CN, and the membrane compounds PTC, PH, HH are on one set, and the remaining

compounds on the other. The edges cut are ptc +→ PTC, CI +→ CN and en +→ EN, each

of which eliminates one or several positive loops. By writing the remaining consis-

tent digraph in the form of a cascade, it is easy to see that the only loop whatsoever

remaining is wg ↔ WG; this makes the analysis proposed in Chapter 4 much easier.

In this relatively low dimensional case we can prove that in fact OPT=17, as the

results below will show.
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Lemma 49 Any partition of the nodes in the digraph in Figure 9.2 generates at most

17 consistent edges.

Proof. From Lemma 9, a simple way to prove this statement is by showing that there

are three disjoint cycles with negative parity in the network associated to Figure 9.2

(disjoint in the sense that no edge is part of more than one of the cycles). Such three

disjoint cycles exist in this case, and they are CI-CN-wg, CI-ptc-PTC, CN-en-EN-hh-

HH-PH-PTC.

9.3.1 Multiple Copies

It was mentioned above that the purpose of this network is to create striped patterns

of protein concentrations along multiple cells. In this sense, it is most meaningful to

consider a coupled collection of networks as it is given originally in Figures 9.1 and 9.2.

Consider a row of k cells, each of which has independent concentration variables for

each of the compounds, and let the cell-to-cell interactions be as in Figure 9.2 with

cyclic boundary conditions (that is, the k-th cell is coupled with the first in the natural

way). We show that the results can be extended in a very similar manner as before.

Given a partition p of the 1-cell network considered above, let p̂ be the partition

of the k-cell network defined by p̂(eni) := p(en) for every i, etc. Thus p̂ consists of k

copies of the partition p in a natural way.

Lemma 50 Let p be a partition of the nodes of the 1-cell network with n consistent

edges. Then with respect to the partition p̂, there are exactly kn consistent edges for the

k-cell coupled model.

Proof. Consider the network consisting of k isolated copies of the network, that is, k

groups of nodes each of which is connected exactly as in the 1-cell case. Under the

partition p̂, this network has exactly kn consistent edges. To arrive to the coupled

network, it is sufficient to replace all edges of the form (HHi,PHi) by (HHi+1,PHi)

and (WGi, eni) by (WGi+1, eni), i = 1 . . . k (where we identify k + 1 with 1). Since by

definition p̂(HHi+1) = p̂(HHi) and p̂(WGi+1) = p̂(WGi), the consistency of these edges

doesn’t change, and the number of consistent edges therefore remains constant.
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Figure 9.3: A subdigraph of the network in Figure 9.2, using the notation defined in
the previous sections. Note that this subdigraph doesn’t include any of the two edges
(WGmem,en) and (HH,PH), which connect the networks of different cells in Figure 9.2;
this will be important in the proof of Lemma 51.

In particular, OPT≥ 17k for the coupled system. The following result will establish

an upper bound for OPT.

Lemma 51 Any partition of the nodes in the digraph in the k-cell coupled network

generates at most 17k consistent edges.

Proof. Consider the signed graph in Figure 9.3, which is a subdigraph of the network

associated to Figure 9.2. Since the inter-cell edges (WGmem,en) and (HH,PH) are not

in this graph, it follows that there are k identical copies of it in the k-cell model. If it

is shown that at least three edges need to be cut in each of these k subdigraphs, the

result follows immediately.

Consider the negative cycle ci-CI-wg-CN-en-EN, which must contain at least one

inconsistent edge for any given partition. The remaining edges of the subgraph form a

tetrahedron with four negative parity triangles, which cannot all be cut by eliminating

any single edge. If follows that no two edges can eliminate all negative parity cycles in

this signed graph, and that therefore 20k− 3k = 17k is an upper bound for the number

of consistent edges in the k-cell network.
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Corollary 23 For the k-cell linearly coupled network described in Figure 9.2, it holds

OPT=17k.

Proof. Follows from the previous two results.

9.4 EGFR Signaling

9.4.1 EGFR Signaling

The protein called epidermal growth factor is frequently stored in epitelial tissues such as

skin, and it is released when rapid cell division is needed (for instance, it is mechanically

triggered after an injury). Its function is to bind to a receptor on the membrane of the

cells, aptly called the epidermal growth factor receptor. The EGFR, on the inner side

of the membrane, has the appearance of a scaffold with dozens of docks to bind with

numerous agents, and it starts a reaction of vast proportions at the cell level that

ultimately induces cell division.

In their May 2005 paper [84], Oda et al. integrate the information that has become

available about this process from multiple sources, and they define a network with

330 known molecules under 211 chemical reactions. The network itself is available

from the supplementary material in SBML format (Systems Biology Markup Language,

www.sbml.org), and will most likely be subject to continuous updates.

The Implementation

Each reaction in the network classifies the molecules as reactants, products, and/or

modifiers (enzymes). We imported this information into Matlab using the Systems

Biology Toolbox, and constructed a digraph G in our notation by letting sign(i, j) = 1

if there exists a reaction in which j is a product and i is either a reactant or a modifier.

We let sign(i, j) = −1 if there exists a reaction in which j is a reactant, and i is

also either a reactant or a modifier. Similarly sign(i, j) = 0 if the nodes i, j are not

simultaneously involved in any given reaction, and sign(i, j) is undefined (NaN) if the

first two conditions above are both satisfied.
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An undefined edge can be thought of as an edge that is both positive and negative,

and it can be dealt with, given an arbitrary partition, by deleting exactly one of the

two signed edges so that the remaining edge is consistent. Thus, in practice, one can

consider undefined edges as edges with sign 0, and simply add the number of undefined

edges to the number of inconsistent edges in the end of each procedure, in order to form

the total number of inputs. This is the approach followed here; there are exactly 7 such

entries in the digraph G.

The Results

After running the algorithm 100 times for this problem, and choosing that partition

which produced the highest number of consistent edges, the induced consistent set

contained 633 out of 852 edges (ignoring the edges on the diagonal and the 7 undefined

edges). Contrary to the previous application, many of the reactions involve several

reactants and products in a single reaction. This induces a denser amount of negative

and positive edges: even though there are 211 reactions, there are 852 (directed) edges

in the 330 × 330 graph G. It is very likely that this substantially decreases OPT for

this system.

The approximation ratio of the SDP algorithm is guaranteed to be at least 0.87 for

some r, which gives the estimate OPT≤≈ 633/0.87 ≈ 728 (valid to the extent that

r has sampled the right areas of the 330-dimensional sphere, but reasonably accurate

in practice). The ‘reduction’ of the model using 852-633+7=226 variables instead of

330 is of debatable usefulness in this case, and possibly at this scale in general unless

further steps are taken.

Two Possible Improvements

One possible way to drastically reduce the number of inputs necessary to write this

system as the negative closed loop of a controlled monotone system is by making suitable

changes of variables using the mass conservation laws. Such changes of variables are

discussed in many places, for example in [113] and [6]. In terms of the associated

digraph, the result of the change of variables is often the elimination of one of the
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closed chains. The simplest target for a suitable change of variables is a set of three

nodes that form part of the same chemical reaction, for instance two reactants and one

product, or one reactant, one product and one modifier. It is easy to see that such

nodes are connected in the associated digraph by a negative parity triangle of three

edges.

In order to estimate the number of inputs that can potentially be eliminated by

suitable changes of variables, we counted pairwise disjoint, negative parity triangles in

the digraph of the EGFR network. Using a greedy algorithm to find and tag disjoint

negative feedback triangles, we found a maximal number of them in the subgraph

associated to each of the 211 chemical reactions. Special care was taken so that any

two triangles from different reactions were themselves disjoint. After carrying out this

procedure we found 196 such triangles in the EGFR network. This is a surprisingly

high number, considering that each of these triangles must have been opened in the

ULP algorithm implementation above and that therefore each triangle must contain

one of the 226 edges cut.

A second procedure that was carried out to lower the number of inputs was a hybrid

algorithm involving out-hubs, that is, nodes with an abnormally high out-degree. Recall

from the description of the DLP algorithm that all the out-edges of a node xi can be

potentially cut at the expense of only one input u, by replacing all the appearances of

xi in fj(x), j 6= i, by u. We considered the k nodes with the highest out-degrees, and

eliminated all the out-edges associated to these hubs from the reaction digraph to form

the graph G1. Then we run the ULP algorithm on G1 to find a partition p of the nodes

and a set of edges that can be cut to eliminate all remaining negative closed chains.

Finally, we put back on the digraph those edges that were taken in the first step, and

which are consistent with respect to the partition p. The result is a decomposition of

the system as the negative feedback loop of a controlled monotone system, using at

most k +m edges.

An implementation of this algorithm with k = 60 yielded a total maximum number

of inputs k + m = 137. This is, once again, a significant improvement over the 226

inputs in the original algorithm.
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Chapter 10

Further Topics

In this chapter, several topics are addressed that have as background motif the theory

of monotone systems. Section 10.1 introduces concepts that can be helpful to determine

when a cascade of monotone systems under positive feedback can be strongly monotone.

Section 10.2 considers the possibility of studying the stability of a non-quasimonotone

matrix by comparing it to a similar matrix which is quasimonotone (in case there is

such a matrix).

10.1 Transparency and Excitability

In this section we further ellaborate on the ideas presented in [7] to give sufficient

conditions on a monotone controlled system so that its closed loop under unity feedback

is strongly monotone. These conditions are chosen in such a way that, in the orthant-

cone case, they can be routinely verified by looking at the digraph of the system. More

precisely, we study conditions under which a cascade of monotone systems is strongly

monotone.

In what follows, we say that a monotone system (9.2) is partially excitable if for any

x1 ≤ x2, arbitrary inputs u1, u2, and any t0 > 0:

u1 < u2 a.e. on (0, t0) ⇒ x(t, x1, u1) < x(t, x2, u2), t ∈ (0, t0)

u1 � u2 a.e. on (0, t0) ⇒ x(t, x1, u1) � x(t, x2, u2), t ∈ (0, t0).
(10.1)

We also say that (9.2) is strongly excitable if

u1 < u2 a.e. on (0, t0) ⇒ x(t, x1, u1) � x(t, x2, u2), t ∈ (0, t0).

Further, we will say that (9.2) is partially transparent if for arbitrary inputs u1 ≤ u2
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and initial conditions x1, x2 one has

x1 < x2 ⇒ h(x(t, x1, u1)) < h(x(t, x2, u2))

x1 � x2 ⇒ h(x(t, x1, u1)) � h(x(t, x2, u2)),
(10.2)

and strongly transparent if

x1 < x2 ⇒ h(x(t, x1, u1)) � h(x(t, x2, u2)),

for all t > 0 for which the solutions x(t, xi, ui) are defined.

Note that the first equation in (10.1) and the second equation in (10.2) correspond to

the notions of weak excitability and weak transparency, respectively, in the terminology

of [7] (borrowed from [88]).

In particular partial excitability (transparency) implies weak excitability (trans-

parency). But the converse is not true: in the cooperative case, if there are arcs from

a fixed input to every single state, but no arcs from other inputs whatsoever, then

the system is weakly excitable but not partially excitable since u1 < u2 doesn’t imply

x(t, ξ, u1) < x(t, ξ, u2). Similarly for transparency. The valid implication allows us

nevertheless to quote Theorem 2 from [7] in our present terminology:

Proposition 12 A monotone system (9.2) that is partially excitable and partially

transparent has strongly monotone feedback loop provided that it is also either strongly

excitable or strongly transparent.

It has also been shown that in the case of orthant cones and sign definite systems,

there are simple conditions on the digraph of the system that imply transparency and

excitability statements. For instance, if there exists a directed path from every input

variable (from every state variable) to every state variable (to every output variable),

then the system is strongly excitable (strongly transparent). (See Theorems 4 and 5 of

[7]). We show a similar result for the definitions above.

Lemma 52 Let (9.2) be a sign definite controlled system that is monotone with respect

to some orthant cone. If from every input (from every state) there exists a path towards

some state (towards some output), and if towards every state (towards every output)
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there exists a path from some input (from some state), then the system is partially

excitable (partially transparent).

Proof.

These results follow from a revision of the proofs of Theorems 4 and 5 in Appendix A

of [7]. Consider first partial excitability: by Case 2 of Lemma A1 of [7], since every input

variable uj reaches some xi through a directed path (we will say that the inputs are non-

idle), u1 < u2 a.e. on (0, t0) implies that x(t, ξ, u1) < x(t, ξ, u2) for any ξ, t ∈ (0, t0).

By monotonicity,

x(t, x1, u1) ≤ x(t, x2, u1) < x(t, x2, u2) .

As to the second assertion, the proof given for Theorem 4 in [7] actually shows that if

every xi is reachable from some uj , then for any ξ:

u1 � u2 ⇒ x(t, ξ, u1) � x(t, ξ, u2) .

The statement for x1 ≤ x2 follows by monotonicity. A similar argument is valid

for transparency: given an input u and assuming ξ1 < ξ2, there is i such that {t ≥

0 | xi(t, ξ1, u) < xi(t, ξ2, u)} ∩ [0, ε) has nonzero measure for every ε > 0, see sketch of

proof of Theorem 5 in [7]. If yi is reachable from xi, then hj(x(t, ξ1, u)) < hj(x(t, ξ2, u)), t >

0. The statement for u1 ≤ u2 follows by monotonicity, and from the fact that every xi

reaches some yj. By the same token, since every yj is reached by some xi (we will say

the outputs are non-idle), x1 � x2 implies hj(x(t, x1, u1)) � hj(x(t, x2, u2)), t > 0.

Now consider, instead of system (9.2), a cascade one of the form

ẋ = f(x, u), y = h(x),

ż = g(z, v), v = y, w = H(z) ,
(10.3)

where Y = V and W = U . We will refer to the controlled subsystems ẋ = f(x, u), y =

h(u), and ż = g(z, v), w = H(z) as (10.3.1) and (10.3.2) respectively.

Lemma 53 Suppose that the cascade system (10.3) is monotone, and that (10.3.1) and

(10.3.2) are both partially excitable and partially transparent. Then (10.3) is partially

excitable and partially transparent, and
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1. If (10.3.1) is strongly excitable, then (10.3) is strongly excitable.

2. If (10.3.2) is strongly transparent, then (10.3) is strongly transparent.

Proof. Consider any pair of initial conditions (x1, z1) < (x2, z2) of the closed loop

system, and let xi(t), zi(t), ui(t), yi(t) = vi(t), wi(t) be their induced inputs and outputs

on a maximally defined interval, i = 1, 2 (from now on we will restrict ourselves to this

interval). In particular, note that xi(t) is the solution of the open system ẋ = f(x, ui)

with initial condition xi and input ui(·), and similarly for zi(t). The monotonicity

of (10.3) is clear since it is the closed loop of a cascade of monotone systems, under

positive feedback. By monotonicity we thus have x1(t) ≤ x2(t) and z1(t) ≤ z2(t), and

consequently all other functions are ordered as well, for every t ≥ 0.

We prove the partial excitability of the cascade: if u1 < u2 on some interval (0, t0),

then x2 < x2 on that interval by partial excitability of (10.3.1), y1 < y2 i.e. v1 < v2

by partial transparency of (10.3.1), and z1 < z2 by partial excitability of (10.3.2). The

other half of partial excitability for (10.3), as well as the proof of partial transparency,

are very similar.

Now suppose that (10.3.1) is strongly excitable, and let u1 < u2. By strong trans-

parency we have x1 � x2, and by partial transparency and excitability z1 � z2, as

expected. Item (2) is proven in a similar way.

Corollary 24 Let the system (10.3) be monotone and let both (10.3.1) and (10.3.2) be

partially excitable and partially transparent, with one of these four conditions being also

strong. Then the closed loop system obtained by setting u = w in (10.3) is strongly

monotone.

Proof. By the previous lemma, the cascade (10.3) is itself partially excitable and par-

tially transparent. If (10.3.1) is strongly excitable or if (10.3.2) is strongly transparent,

the conclusion follows by the previous lemma and the previous proposition. In the

other two cases, simply invert the order of the two systems in the cascade, note that

the closed loop system remains the same, and apply the previous argument.
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A straightforward generalization applies, of course, for cascades of more than two

subsystems.

10.2 Monotone Envelopes

Monotone matrices have very strong stability properties, in particular thanks the Perron

Frobenius theorem (see Chapter 3). Suppose that a matrix is not quasimonotone, but

that it would be if a few of its entries changed sign. Then it would make sense to study

the stability of this matrix by looking at its monotone counterpart. This is the idea

behind the present section. There are plenty of such results in the literature: a classic

theorem of McKenzie states that if a matrix M has negative diagonal entries, and

|mii| >
∑

j 6=i
|mij| , i = 1 . . . n,

then M must be exponentially stable. This result can be thought of not quite as a test

for the stability of M , but rather for the matrix that results by replacing mij by |mij |,

i 6= j.

Given an arbitrary n×n matrix M , let the monotone envelope M of M with respect

to ≤ be defined by

mij =





mij, i = j

|mij | , i 6= j.

Let M− = (M −M)/2, and let M+ = M −M−. Then M = M+ −M−, M =

M+ +M−. Note that M+ is quasimonotone, and M− ≥ 0. The following lemma shows

a sense in which this is a canonical decomposition of M , and it can be used to define

the monotone envelope of M for more general cones.

Lemma 54 M ≤ A+ P , for any A quasimonotone and P ≥ 0 such that M = A− P .

Proof. Since all the off-diagonal entries of A are nonnegative, it must follow that P ≥

M−. But

M+ −M− = M = A− P ≤ A−M−,

so that M+ ≤ A. Therefore M = M+ +M− ≤ A+ P .
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In the non-orthogonal case, one can define M as follows. Let A ≤ B if and only

if B − A is a positive matrix, i.e. (B − A)K ⊆ K. Assume that the cone defined by

this order has nonempty interior and that for any nonempty set of matrices S that is

bounded from below there exists the matrix inf S. Then one can let

S = {A+ P |A quasimonotone , PK ⊆ K, M = A− P}.

The set S is necessarily nonempty, since there exists A� 0 large enough that A ≤M ;

for P := A −M the existence of a point in S is assured. A lower bound for S is M

itself. Defining M := inf(S), Lemma 54 guarantees that this matrix coincides with that

previously defined in the cooperative case.

We callM = A−P a monotone decomposition of the matrixM if A is quasimonotone

and P ≥ 0. Thus M is the minimum of A+P over all monotone decompositions of M .

If A+ P is irreducible, then we call it a strongly monotone decomposition of M .

Consider the monotone controlled system under negative feedback

ẋ = Ax+Bu, u = −Cx (10.4)

(A is not assumed here to be a stable matrix). The closed loop system associated to

(10.4) is therefore

ẋ = (A−BC)x. (10.5)

The following lemma is the linear version of a result in [29].

Lemma 55 Assume that there are a, b ∈ Rn, a ≤ b, such that

Aa−BCb ≥ 0, Ab−BCa ≤ 0. (10.6)

Then [a, b] is an invariant set for (10.5). The solution a(t) (b(t)) of (10.4) with

initial condition a (b) and constant control −Cb (−Ca) is monotonically increasing

(decreasing) and converges towards a1 = A−1BCb (b1 = A−1BCa). Furthermore,

ω([a, b]) ⊆ [a1, b1].

Proof. See the proof for the general nonlinear case in [29].
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In the simple case BC = 0, equation (10.6) implies a ≤ 0, b ≥ 0, by monotonicity

of −A−1. Then using a lemma from [101] the functions a(t), b(t) are monotonic and

bounded (by monotonicity) and must therefore converge to the unique equilibrium

a1 = b1 = 0.

The following Lemma is related to McKenzie’s result stated above. For simplicity,

we still consider only the cooperative case.

Lemma 56 If M is exponentially stable, then M is exponentially stable.

Proof. Let D be defined by pij = 1 for all i, j. Let A = M+ + εD and B = M− + εD,

C = I, where ε > 0 is small enough that A + BC is still exponentially stable. Since

A+BC is quasimonotone irreducible, there exists a Perron-Frobenius eigenvalue b� 0

such that (A+BC)b = λb� 0 (see Chapter 3). Let a := −b. Then a� 0 � b, and

Aa−BCb = λb� 0, Ab−BCa = −λb� 0. (10.7)

By Lemma 55, [a, b] is invariant for (10.5). Since this set has nonempty interior, it

follows that M = A−BC is Lyapunov stable.

The proof that M is actually exponentially stable follows by a perturbation argu-

ment, and by the fact that M + δI = M + δI. If M were only Lyapunov stable, then

one could consider M ′ = M + δI for δ > 0 small enough that M ′ is still exponentially

stable, and reach a contradiction by the above argument.

Notes

It is clear from the proof that if M is Lyapunov stable, then M is also Lyapunov stable.

Also, it is not true that if M is exponentially stable, then M is exponentially stable,

even for irreducible M . But it follows from the proof that if M is exponentially stable

then there exists a strongly monotone decomposition M = A − BC and a � 0 � b

such that

Aa−BCb� 0, Ab−BCa� 0. (10.8)

The following result shows that a converse also holds.
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Lemma 57 Let M be an arbitrary n × n matrix, and let M = A − P be a strongly

monotone decomposition of M . Then A + P is Lyapunov stable (exponentially stable)

if and only if there exist a, b, a� 0 � b such that (10.6) ((10.8)) holds.

Proof.

Let A + P be Lyapunov stable, and let q be the Perron-Frobenius eigenvalue of

A + P ; define b := q, a := −q. Then in the same way as in the previous proof,

Aa−Pb = λb ≥ 0, Ab−Pa = −λb ≤ 0. If A+P is exponentially stable, then equation

(10.7) holds. This shows one direction of the statement.

To see the converse result, let a� 0 � b be such that the weaker inequality (10.6)

holds, and suppose that leig A+P > 0. Let q � 0 be the Perron-Frobenius eigenvalue

associated to A+P , and let p := −q. By possibly rescaling p, q using a positive constant,

we can assume that [p, q] ⊆ [a, b] and either p ∈ ∂[a, b] or q ∈ ∂[a, b]. Assume the first

case (the other being very similar). Since p� 0 � b, it is impossible that p ∈ ∂(b−K).

Therefore it must hold p ∈ ∂(a + K). Using the Volkmann condition, let λ ∈ K∗ be

such that λ(p− a) = 0, so that by monotonicity λ(Ap) ≥ λ(Aa). But then

λ(Ap− Pq) ≥ λ(Aa− Pq) ≥ λ(Aa− Pb) ≥ 0,

which is a contradiction since Ap − Pq = −(A + P )q � 0. Therefore one concludes

that leig A+ P ≤ 0.

If a, b are such that the stronger inequality (10.8) holds, define A′ = A + εI for

ε > 0 small enough that (10.8) still holds for A replaced by A′. Then by the previous

argument A′ + P is Lyapunov stable, hence A+ P is exponentially stable.

The following simple lemma addresses some properties relating monotone decom-

positions and irreducibility.

Lemma 58 Let M be a n× n matrix. The following conditions are equivalent:

1. M is irreducible.

2. M is irreducible.

3. Every monotone decomposition of M is strongly monotone.
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Proof. The equivalence of the first two conditions is obvious, since M and M have

nonzero entries at the same coordinates. If M is irreducible, and M = A − P is a

monotone decomposition, then by Lemma 54 M ≤ A + P . Since both matrices have

nonnegative off diagonal entries, A + P is also irreducible. Finally, if every monotone

decomposition of M is strongly monotone, then in particular M = M+−M− is strongly

monotone, that is, M = M+ +M− is irreducible.

The following corollary shows how the condition in Lemma 55 is in a sense a test

for stability, not for M , but rather for M .

Corollary 25 Let M be an irreducible arbitrary matrix, and let A = M+, B =

M−, C = I. Then M is Lyapunov stable (exponentially stable) if and only if there

exist a, b, a� 0 � b such that (10.6) ((10.8)) holds.

Proof. Follows directly from Lemma 57 and Lemma 58.
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Chapter 11

Future Work

In several chapters of this dissertation the negative feedback closed loop of a monotone

controlled system is considered, and sufficient conditions are given for global attractivity

towards a unique equilibrium. It was also shown how in a very general setting a non-

monotone system can be decomposed as such a negative feedback loop. It is therefore

natural to ask whether the same setup can provide sufficient conditions for other kinds of

behavior, namely global attractivity towards two or more equilibria (i.e. multistability)

or the existence of periodic solutions. The present chapter is a discussion how such

results could be addressed.

11.1 Monotone Embeddings and Multistability for Non-Monotone Sys-

tems

Recall that given a strongly monotone system in Rn with precompact orbits, almost

all solutions must converge towards the set of equilibria E. If this set is discrete, or

under other relatively mild hypotheses [101, 28], then almost all solutions are in fact

convergent towards some equilibrium (which depends on the initial condition). See

Section 3.5 and Chapter 8 for a thorough discussion of these ideas.

It is a direct consequence of Dancer’s Theorem 10 that a stronger stability conclusion

can be reached for a general monotone system provided that no two equilibria are

comparable under ≤, namely that all solutions of the monotone system are convergent.

In this section, it is illustrated how the convergence of all solutions to equilibrium on

a monotone system implies the convergence of all solutions to equilibrium for another,

non-monotone system in a potentially quite general context. The possible relevance of

the input-output approach is described as well.
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Lemma 59 Let K ⊆ Rn be a cone, and let X ⊆ Rn be such that for every bounded A ⊆

X, there exist a, b ∈ X that bound A from below and above. Let ẋ = f(x) be a monotone

system on X with precompact orbits, and let no two equilibria in E be comparable under

≤. Then all solutions of the system converge towards some equilibrium.

Proof. This is a direct consequence of Dancer’s lemma in [19]: given x ∈ X, there

exist equilibria e1, e2 such that e1 ≤ ω(x) ≤ e2. But then it follows e := e1 = e2 by

hypothesis, and therefore ω(x) = e.

A particular case of interest is that in which all equilibria are included in the diago-

nal, as will be shown below. It will be essential that every solution is convergent, since

we will concentrate our attention on the convergence of solutions on a set of measure

zero.

Let KX ⊆ Rn, KU ⊆ Rm be orthant cones, and let X ⊆ Rn, U ⊆ Rm be closed

orthants for simplicity. Consider a controlled monotone system under negative feedback

ẋ = f(x, u), u = h(x). (11.1)

Closing the loop we obtain the system that is the actual target of our study, namely

ẋ = f(x, h(x)). (11.2)

In Sections 5.3 and 9.1, it is shown how any sign-definite system can be written as

the negative feedback loop of a controlled monotone system in this way.

Following an argument similar to that given by Gouze [39] and Cosner et al. [18],

we extend this system by considering the 2n-dimensional system

ẋ = f(x, h(z))

ż = f(z, h(x)).
(11.3)

This system is defined on the set X × X, and it is monotone with respect to the

cone K × (−K) — see [29]. The system extends (11.2) in the sense that the diagonal

D = {(x, x) |x ∈ X} is invariant for (11.3), and a trajectory of the form (x(t), x(t)) is

a solution of (11.3) in D if and only if x(t) is a solution of (11.2) in X.
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In the paper [29], this embedding is exploited to replicate many of the results of this

dissertation’s chapters on negative feedback, by considering the particular case in which

the extended monotone system has a unique equilibrium. This promising and simple

approach was considered only after the results of Chapters 4 and 5 were in the press

for the Journal of Discrete and Continuous Dynamical Systems. Nevertheless the ideas

in these chapters are of value in their own right; see also the subsection on periodic

solutions in the present chapter.

On the other hand, any condition on the monotone embedding system that guaran-

tees that every solution converges towards an equilibrium can be used to conclude the

convergence of every solution of (11.2) to an equilibrium. For instance, consider the

following corollary.

Corollary 26 Let (11.2) be such that system (11.3) has bounded solutions and has all

its equilibria in the diagonal D. Then all the solutions of (11.2) converge towards an

equilibrium.

Proof. Note that the cone K × (−K) as well as the state space X × X are closed

orthant sets, and that therefore the boundedness hypothesis in Lemma 59 is satisfied.

Furthermore, in the closed set X ×X the precompactness of the solutions is equivalent

to their boundedness (in open state spaces this is not guaranteed). Clearly any two

elements of the diagonal are unordered: if (x, x) ≤ (y, y), then x ≤ y and y ≤ x, and

therefore x = y and (x, x) = (y, y). Lemma 59 can be applied, to conclude in particular

that all solutions of (11.3) on D converge towards an equilibrium. By the equivalence

between systems (11.3) on the diagonal and (11.2), the conclusion follows.

Proving that a monotone system ẋ = g(x) has only bounded solutions can be done

by finding arbitrarily large vectors x such that g(x) ≤ 0, g(−x) ≥ 0 (at least in the

case X = Rn); see [101].

A characterization for the second hypothesis in Corollary 26 is given now. We define

the set characteristics KX ,K of the open loop (11.1) as elsewhere:

KX(u) = {x | f(x, u) = 0}

K(u) = {h(x) | f(x, u) = 0}
(11.4)
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Now consider the discrete inclusion system

un+1 ∈ K(un) (11.5)

which can potentially yield useful information about the original system. For instance,

it follows from Theorem 12 that if KX is a single-valued function and the discrete

system (11.5) is globally attractive towards ū, then (11.2) converges globally towards

K(ū).

Another common behavior of this discrete system is the convergence towards two

cycles; the following lemma provides a simple description of such cycles in terms of the

monotone embedding.

Lemma 60 A point (x, z) is an equilibrium of (11.3) if and only if (h(x), h(z)) is a

two-cycle of the discrete inclusion (11.5).

Proof. Simply note that (x, z) is an equilibrium if and only if x ∈ KX(h(z)), z ∈

KX(h(x)), and that this is equivalent to h(x) ∈ K(h(z), h(z) ∈ K(h(x)).

Lemma 61 Suppose that whenever e1, e2 are two different equilibria of (11.2), it holds

that h(e1) 6= h(e2). Then all equilibria of (11.3) are on the diagonal D if and only if

system (11.5) has no nontrivial two-cycles.

Proof. Let u, v be two different input values such that u ∈ K(v), v ∈ K(u). By definition

of K, there must exist x, z ∈ X such that u = h(x), v = h(z). Clearly x 6= z. By the

previous lemma, (x, z) is an off-diagonal equilibrium of (11.3).

Let now (x, z) 6∈ D be an equilibrium of (11.3), so that u = h(x), v = h(z) form

a two-cycle of the discrete inclusion. Assume by contradiction that u = v; then 0 =

f(x, h(z)) = f(x, h(x)) and x is an equilibrium of (11.2). Similarly for z. Since x 6= z,

then by the stated assumption it must hold u = v, which is a contradiction.

Corollary 27 Let h be injective in the set E of equilibria of (11.2), and let (11.3) have

bounded solutions. Then all solutions of (11.2) converge to an equilibrium, provided

that the discrete inclusion (11.5) has no nontrivial two-cycles.
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The injectiveness of h in E is particularly common in the case that the digraph of

(11.2) is strongly connected. The condition on the discrete inclusion holds in particular

when all solutions of the discrete inclusion are convergent.

The work of de Leenheer and Malisoff [24] should be mentioned at this point, in

which they consider the original paper by Angeli and Sontag [6], and weaken the small

gain condition by considering set characteristics and a discrete inclusion very much like

in equation (11.4). They conclude that all solutions of the closed loop system (11.2)

are convergent to an equilibrium, provided that all solutions of the discrete inclusion

are convergent, which is consistent with the argument provided above.

The following negative result is the reason why this argument is not in the main

text — namely, the hypotheses of Corollary 26 turn out only to be satisfied in the case

considered in the paper [29].

Lemma 62 Consider a system ẋ = g(x) defined on Rn which i) is monotone with

respect to a cone with nonempty interior, ii) has bounded solutions, and iii) is such

that |E| > 1. Then there exist two different equilibria e1, e2 such that e1 < e2.

Proof. Suppose that all equilibria are pairwise unordered. By the Dancer result above,

the boundedness of the solutions and the monotonicity imply that every solution con-

verges towards an equilibrium. Let x(t) and y(t) be solutions such that x(t) → e1

and y(t) → e2, e1 6= e2. Since the underlying cone has nonempty interior, there exists

z = z(0) which bounds x(0) and y(0) from above. Let the corresponding solution z(t)

converge to e3. Then necessarily e1 ≤ e3 and e2 ≤ e3 by monotonicity. But one of these

two inequalities must be strict, since otherwise e1 = e2.

The problem that nevertheless remains is to find other conditions on the open loop

system (11.1) such that all solutions of the monotone system (11.3) are convergent to

equilibrium, regardless of the existence of off-diagonal equilibria. Any such conditions,

which will likely use more of the structure of the particular monotone system (11.3), will

yield sufficient conditions for the non-monotone system (11.2) to have only convergent

solutions.
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11.2 Inverse SGT and Ejective Fix Points

Consider once again a monotone controlled dynamical system under negative feedback

(11.1) assuming X = Rn, U = Rm, and consider the corresponding closed loop system

(11.2). Assume also the existence of single-valued characteristic functions kX : U →

X, k : U → U as in Chapter 4. In the simplest case of the small gain theorem

(Theorem 12, or SGT for short), the small gain condition (namely that all solutions

of the discrete system un+1 = k(un) are convergent towards a point ū) implies that

system (11.2) is globally attractive to an equilibrium. In Chapter 5, it is described how

one can in fact introduce delays of arbitrary length in the open loop system (11.1),

without changing the functions kX , k, and still preserve the global attractivity of the

closed loop system. (Essentially, the only condition necessary after the introduction of

the delay is that the monotonicity of the open loop system is preserved.)

To evaluate the usefulness of the SGT one must ask the question of how strong

the underlying assumptions are. Indeed, often in an application the open loop system

(11.1) has a unique equilibrium for each constant value of the control u, but this value is

not globally attractive and the solutions are unbounded; in this case the characteristic

functions kX , k are not well defined.

But an interesting case which will occupy us in this section is that in which the

characteristic functions exist but the small gain condition is not satisfied. The question

we want to ask is: under which conditions does it hold that if the small gain condition

fails, then the continuous system is not globally attractive for some value of the chosen

delay? In particular, when does a violation of the small gain condition result in the

existence of periodic solutions for some value of the delay? A general solution to this

problem would go a long way towards showing the strength of the small gain theorem,

and it would provide a more complete picture of the relationship between the closed

loop system and its associated discrete system.

In the absence of delays, a violation of the small gain condition doesn’t generally

imply that the continuous system is not globally attractive, for example in the case

ẋ = −x+ u, u = −2x. But even in this case, there seems to be a relationship between
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closed loop and discrete system, as it was noted by Smith in 1987 [100] for the case

of the cyclic gene expression model — see the quote in Section 5.1. If the discrete

system is globally attractive to equilibrium, Smith notes, the continuous system is

globally attractive as well (i.e. SGT). But if the discrete system globally approaches

a two-cycle, then the continuous system, as simulated numerically, often approaches

a periodic cycle. In 1990, Mallet-Paret and Smith [73] proved a Poincare-Bendixon

theorem for a class of undelayed systems containing this example, and thus proved that

convergence to equilibrium or to a periodic solution are the only possible behaviors of

such a system. But the relationship to an associated discrete system does not seem to be

studied in this work. The corresponding result for cyclic delay systems was published

in 1996 by Mallet-Paret and Sell [72]. Once again, no relationship with a discrete

system appears to be given — and this relationship could prove very illuminating, since

the Poincare-Bendixon theorem per se does not provide information as to when, say,

periodic behavior arises as opposed to global attraction to equilibrium.

A clue to the solution of the stated question is provided in a one-dimensional delay

setup by the work of Nussbaum, Mallet-Paret, and others [15, 43, 70]. Consider a delay

differential equation

ẋ = g(x(t − τ)) − x(t),

where g : R → R is a decreasing bounded function such that g(0) = 0, |g′(0)| > 1 (the

work in the quoted references assumes xg(x) < 0, x 6= 0 instead of decreasingness, but

the simpler framework is appropriate for this presentation). One can decompose this

system as the closed loop of the delay controlled system

ẋ = u− x(t), u = g(x(t− τ)).

Note that this system is monotone with negative feedback using the standard orders,

and that the characteristic functions are well defined and have the value kX(u) =

u, k(u) = g(u). Therefore the condition |g′(0)| > 1 can be thought of as ensuring the

linear instability of the fix point 0 of the discrete system un+1 = k(un) = g(un).

It is proven in [43, 70] that for large enough τ , there exists a periodic solution of

this system. Thus the question asked above is answered affirmatively, at least for this
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one-dimensional framework. The strategy used to prove this is roughly as follows: after

a straightforward change of variables, the system is brought into the equivalent form

εẋ = g(x(t− 1)) − x(t) (11.6)

where ε = 1/τ . Consider the set K of functions φ : [−1, 0] → R+ such that φ(−1) = 0

(an additional condition is actually further imposed, see Hadeler and Tomiuk [43]), and

define (for φ 6= 0) S(φ) = xt0 , where x(t) is the solution of (11.6) with initial condition

φ, and where t0 is the least t ≥ 0 such that xt ≥ 0. Define further S(0) = 0. Now it is

shown that S(φ) ∈ K, and that S : K → K is a completely continuous function.

After noting that K has a closed and bounded invariant subset, the Schauder fix

point theorem ensures that there exists a fix point of the function S, which strictly

speaking guarantees the existence of a periodic solution of system (11.6). But there is

a problem: the fix point S(0) = 0 induces the solution x(0) ≡ 0, which is ‘periodic’,

but which should be ruled out if one wants to find a nontrivial periodic trajectory of

this system. This is where the so-called ejective fix point theory becomes useful.

Let P : Y → Y be a completely continuous function defined on a closed, bounded

subset Y of an infinite dimensional Banach space. A fix point x of P is said to be ejective

if there exists an open neighborhood U of x such that for every z ∈ U−{x}, P n(z) 6∈ U

for some n. Browder [13] proved that in this setup, which is the same of the Schauder

fix point theorem, there always exists a fix point which is not ejective. It is interesting

that this result is false in finite dimensions: the complex function P (reθi) =
√
re(θ+π/2)i

is an example for the two-dimensional closed disc.

Back to equation (11.6): by proving that the trivial fix point φ = 0 of P is ejective

and noting that the domains in question are infinite dimensional, it follows by Browder’s

theorem that there must be another fix point, which therefore must correspond to a

nonzero periodic solution of the delay equation.

The future work proposed in this section is therefore to carry out a similar proof

for a multidimensional delay system. In order to make it compatible with the results

of the Poincare-Bendixon theorem in [72], a similar framework can be chosen as in that
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paper; this framework could eventually be generalized to other non-cyclic systems. The

difficulties involved are to choose the set K appropriately, to prove that the function

P is continuous (especially at 0), and to show that the trivial fix point of P is ejective.

It should be mentioned that similar work has recently been done in that context by

Ivanov and Lani-Wayda [54], in which the authors explicitly avoid the ejective fix point

approach.
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Chapter 12

Appendix

12.1 On Nonhomogeneous Equilibria of RD Systems

Consider a finite dimensional system

u̇ = f(u) (12.1)

which is globally attractive towards a point e ∈ Rn. If diffusion is added to the system

to form the reaction diffusion system

u̇ = ∆u+ f(u), (12.2)

under Neumann boundary conditions, does it follow that this system is globally attrac-

tive towards the constant function ê?

The following counterexample should illustrate why this conclusion doesn’t hold.

Let Ω = [−π/2, π/2] and X = C(Ω,R2). Let the function φ ∈ X be defined by

φ(x) := (sin(x),
1
2

cos(2x) +
1
2
), x ∈ Ω.

Then φ′(−π/2) = φ′(π/2) = 0, and ∆φ = φ′′(x) = (−sin(x),−2cos(2x)). The image of

φ is a dome not unlike the upper half of the unit sphere in R2, and ∆φ points towards

the inside of this dome throughout. The idea is to construct a function f : R2 → R2

such that f(φ(x)) = −∆φ(x) for every x ∈ Ω, so that φ becomes a non-homogeneous

equilibrium of (12.2). In order to do this, let γ : R × R+ − {0} → A be the radial

projection function towards A = Im φ. Define α : R2 − ({0} × R−) → R2 by

α(u) :=





−(∆φ)(φ−1(γ(u)), if u ∈ Dom γ

(1, 0), if u2 < 0, u1 > 0

(−1, 0), if u2 < 0, u1 < 0.
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u1

u2

φ

α(u)

∆φ

α

Figure 12.1: The arc on this figure represents the image A of the function φ :
[−π/2, π/2] → R2. The functions ∆φ(x) and α(φ(x)) cancel each other on A. The
function α is further defined on R2 − {0} × R− as shown.

It is easy to see that α is a Lipschitz continuous function, and that α(φ(x)) =

−∆φ(x) for x ∈ Ω. Define now β : R2 → R2 as β(e) := 0, and

β(u) :=
|e− u|

1 + |e− u|
(e− u)
|e− u|

for u 6= e, where e = (0, 3). Thus clearly β is a continuous function and the system

u̇ = β(u) converges globally towards e.

Finally, let η : R2 → [0, 1] be a C1 function such that η(u) = 1 if d(u,A) ≤ 1/3,

η(u) = 0 if d(u,A) ≥ 2/3, and 0 < η(u) < 1 otherwise. Define f : R2 → R2, by

f(u) = η(u)α(u) + (1 − η(u))β(u).

To verify that φ is an equilibrium of (12.2), note that f(φ(x)) = α(φ(x)) = −∆φ(x) on

Ω. Also, ∂φ/∂n = 0 on ∂Ω as shown above.

It only remains to show that (12.1) is still globally attractive towards e. The fol-

lowing lemma should be of help.

Lemma 63 Consider a dynamical system (12.1) defined on R2 with bounded solutions.

Let a ∈ R, and S := {x ∈ R2 |x2 ≤ a}. If (12.1) has no equilibria in S, and if f2(x) ≥ 0

in S, then for every solution x(t), it holds that x(t) > a for some t.
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Proof. Consider a solution x(t) of (12.1), x0 = x(0). Let b := sup{x2(t) | t > 0}, and

suppose by contradiction that b ≤ a. From x′2(t) ≥ 0, it follows that ω(x0) ⊆ {x ∈

R2 |x2 = b}. Since ω(x0) is a compact, connected set, we have ω(x0) = [c, d] × {b}

for some c ≤ d. Let now z ∈ ω(x0), and let z(t) be the solution of (12.1) with initial

condition z. Since it also holds that ω(x0) is an invariant subset under (12.1), and since

z1(t) is monotonic on t, it follows that z(t) converges towards an equilibrium in ω(x0),

which is a contradiction.

In our particular case, we observe that the solutions of (12.1) are bounded, since

f(u) = β(u) except on a bounded set. Note that α2(u) ≥ 0 whenever defined, and

that β2(u) ≥ 0 for u2 ≤ e2 = 3. Therefore letting a = 2 it holds that f2(u) ≥ 0 on S.

To check that there are no equilibria in S, suppose by contradiction that f(û) = 0 for

û ∈ S. Since β2(û) > 0, it must in particular hold that η(û) = 1 and d(û, A) ≤ 1/3.

Noting that α2(u) > 0 whenever u2 > 0, it follows that û2 ≤ 0. But in this case

α1(û) = 1 or −1, and thus û cannot be an equilibrium. By the lemma above, all

solutions of (12.1) satisfy x2(t) > 2, for some t. But in this (invariant) set f(u) = β(u),

and thus all solutions converge towards e.

A Continuum of Nonhomogeneous Equilibria

A similar argument as the one given above can be provided to guarantee the existence of

not only one equilibrium φ, but of a continuum of nonhomogeneous equilibria φδ, while

preserving the fact that the undiffused system (12.1) has a unique globally attractive

equilibrium. Given the functions defined above, let φδ(x) = δφ(x), for δ > 0. Since

φ′δ(x) = δφ′(x) and φ′′δ (x) = δφ′′(x), it can be easily checked that any of these functions

satisfies the Neumann boundary condition. Moreover, for every u ∈ R×R+−{0} there

exists a unique pair (δ, x) = (δ̄(u), x̄(u)) such that φδ(x) = u. We can therefore redefine

the function α as

α(u) =





−∆φδ̄(u)(x̄(u)), u ∈ R × R+ − {0}

(u1, 0), u2 < 0, u1 6= 0.

We show that α is continuous: note that φδ(π/2) = (δ, 0), φδ(−π/2) = (−δ, 0); from

this it follows that δ̄(u1, 0) = |u1|, u1 6= 0, and x̄(u1, 0) = sign(u1)π/2. Therefore for
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u = (u1, 0), it holds

∆φδ̄(u)(x̄(u)) = ∆φ|u1|(sign(u1)π/2) = |u1| (sign(u1), 0) = (u1, 0),

and thus the continuity of α is guaranteed.

It is also clear by construction that for every δ > 0, α(φδ(x)) = −∆φδ(x). Therefore

by defining the function f as before, φδ is a nonhomogeneous equilibrium of (12.2) for

all δ in a neighborhood of 1.

Finally, it is easy to verify that f still satisfies the hypotheses of Lemma 63 for

a = 2, by following the same argument as above. We have thus proven the following

corollary.

Corollary 28 There exists a function f : R2 → R2 such that system (12.1) is globally

attractive to an equilibrium, but such that the associated reaction diffusion system (12.2)

has a continuum of nonhomogeneous equilibria.

12.2 A Note on Monotonicity for Chemical Reactions

It is appealing to apply the ideas of monotone systems to the theory of chemical reac-

tions. After all, the interactions between compounds seem to be consistently promoting

(though we will see shortly that this is not necessarily true). Also, the behavior of many

reactions is like that of monotone systems in that every solution converges towards some

equilibrium.

In Chapter 8 of the book by A.I. Volpert, V.A. Volpert and V.A. Volpert [113],

the authors consider a general chemical reaction under mass action assumptions, and

they give a sufficient condition for the underlying dynamical system to be monotone,

after eliminating mass conservation constraints. In the beginning of the chapter, the

authors give a useful account of the basic setup for chemical reactions. For both of these

reasons, it is worthwhile to give this short self-contained description of the beginning

of that chapter.
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Consider a set of n chemical reactions on m chemical species A1 . . . An: 1

m∑

k=1

αkiAk −→
m∑

k=1

βkiAk, i = 1 . . . n.

Define the number γki := βki−αki, that is the net number of molecules of species Ak

that appear each time that reaction i is carried out; it can be interpreted as the ‘stake’

of molecule Ak in the reaction i. Forming the matrix Γ with these components, called

the stoichiometry matrix of the system, one can write the dynamical system associated

to the reactions as
dA
dt

= Γω.

Here ωi is the rate at which reaction i is taking place at a particular state, i = 1 . . . n,

and it is given by

ωi = KAα1i
1 · . . . ·Aαmi

m

in the mass action case. This is generalized in equation (1.3) of [113] where the expo-

nents are allowed to vary from αki and K is allowed to depend on the temperature2.

An additional function gi(A) is introduced but never used in this argument, and it will

be ignored here by defining gi(A) := 1.

Notice that even though all the reactions are superficially ‘promoting each other’, in

fact many compounds can influence each other in an inhibitory manner. The simplest

case for this is that in which A and B bind to form C, in which case A and B influence

C positively, but A influences B negatively and vice versa.

One important property of this system is that there are often planes that are in-

variant under it. If σ ∈ Rm is a vector such that

Γtσ = 0,

then Γω · σ = ωtΓtσ = 0, and so every plane σ · A = const. is invariant under system

(12.2). In applications, the vectors σ can be interpreted as mass conservation laws. It is

1In the book ‘aik’ stands throughout for the i-th column, j-th row, of a matrix A. See for instance
equation (1.6) in V 3. I have therefore switched the order of all such double indices here for the sake of
clarity.

2This last dependence is interesting since it can provide the framework for a dependence on a control
u, but assumptions are then made for the temperature that make the setup unlikely for other controls.
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a standard result from linear algebra for arbitrary matrices that Rank Γ+Null Γt = m.

Therefore we can form a basis σ1, . . . , σm−r of Ker Γt, where r is the rank of Γ. After

intersecting all corresponding hyperplanes to form the r-dimensional subspace Rr
0 ⊆ Rm,

we see that all planes of the form Rr
0 +A0 are invariant under (12.2). Since all solutions

are also restricted to the positive orthant of Rm, every state A0 defines an invariant

polyhedron Π = (Rr
0 +A0) ∩ (R+)m.

Fixing such a plane Rr
0 + A0, and defining an affine transformation A = Pu + A0

for any nonsingular P : Rr → Rr
0, one can view the system as taking place in an r-

dimensional polyhedron in Rr. The particular choice of P will make the system in Rr

look in various ways, but one canonical choice for P is as follows: since every column γi

of Γ is orthogonal with all σl, l = 1 . . . m−r, it follows that each column γi is in Rr0, and

therefore one can choose for P the first r columns of Γ, which can be assumed without

loss of generality to be linearly independent and generate the remaining columns of Γ.

Letting

γk = λk1γ1 + . . . + λkrγr, k = r + 1 . . . n,

one calculates after carrying out the change of variables that the new system takes the

form
dui
dt

= ωi +
n∑

k=r+1

λkiωk, i = 1 . . . r,

where each ωi must be written in terms of the ui’s by replacing the Ai’s using the affine

transformation. The authors restrict their attention here to the case where Γ has full

rank, in which case the sum above disappears and the system is particularly simple.

By differentiating each ωi with respect to uj , i 6= j, and assuming no temperature

dependence, the following sufficient condition for cooperativity holds:

αkiγkj ≥ 0, k = 1 . . . m, i, j = 1, . . . r, i 6= j.

In the case that Γ doesn’t have full rank, the sufficient condition is (12.2), together

with the condition

λliαklγkj, i, j = 1 . . . r, i 6= j, l = r + 1 . . . n, k = 1 . . . m. (12.3)
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The Invertible Reactions Case

We consider the case of m species and n′ linearly independent reactions, each of which

is reversible to form a total of n = 2n′ reactions. If Γ′ is the m × n′ stoichiometry

matrix associated to the nonreversible case, we therefore have that Γ = (Γ′;−Γ′). The

assumption on independence means that Γ′ has full rank, that is, r = n′. Clearly it

holds in this case that λr+i,i = −1 for i = 1 . . . r, and that λli = 0 otherwise. The

criterion for monotonicity in this case is (12.2), together with

−αk,r+iγkj ≥ 0, i, j = 1 . . . r, i 6= j, k = 1 . . . m,

that is,

βkiγkj ≤ 0, i, j = 1 . . . r, i 6= j, k = 1 . . . m, (12.4)

Example:

The simple system

A+B ↔ C

consisting of two reactions, with reaction rates ω1 = µAB, ω2 = νC, has the associated

reaction matrices

Alpha =




1 0

1 0

0 1



, Beta =




0 1

0 1

1 0



, Γ =




−1 1

−1 1

1 −1



.

It can be put in the above setup as follows. After setting γ1 = (−1,−1, 1)t, γ2 =

(1, 1,−1)t, one finds that there are two independent vectors σ1 = (1, 0, 1)t , σ2 =

(0, 1, 1)t , indicating that the system moves along the planes A+ C = c1, B + C = c2,

for any given constants c1, c2. The rank of Γ is one, and clearly λ = λ21 = −1. After

considering an initial point, say A0 = (c1, c2, 0), and choosing P = γ1, one makes the

change of variables to obtain

u̇ = µ(c1 − u)(c2 − u) − νu.

This system is not globally attractive as a whole, but after restricting the attention

to the appropriate interval [0,min(c1, c2)], it is not difficult to see that u converges
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globally to an equilibrium. The same must therefore be true of the original system

restricted to its polyhedron Π, for any starting condition.

Interpretation

The sufficient condition (12.2) for the case r = n can be interpreted as follows (in the

entries in which αki = 0, there is nothing to prove, and it holds by construction that all

entries of Alpha are nonnegative). Given a species Ak, if there is a reaction i in which

αki > 0, then for all other reactions j 6= i Ak must be produced or at least not consumed

(ie γki ≥ 0). Equivalently, if Ak is consumed in some reaction i, then it cannot appear

as an input in any other reaction j 6= i in order to satisfy the sufficient condition. In

particular, if Ak is an input of at least two reactions, then it can’t be consumed in any

single reaction. Nevertheless note that the presence of enzymes doesn’t directly violate

the condition, since such compounds have zero stoichiometry by definition.

In the case of invertible reactions considered above, the second condition (12.4) can

be interpreted similarly considering the species that appear as outputs: given a species

Ak, if there is a reaction i in which βki > 0, then for all other reactions j 6= i Ak must

be consumed or at least not produced (ie γki ≤ 0).

As a strategy for studying the monotonicity of other systems, it would be interesting

to consider other choices for the matrix P , which are chosen in such a way that the

resulting system on u is monotone.

12.3 Well-Definiteness of Delay Controlled Systems

Consider a controlled delay system

ẋ(t) = f(xt, α(t)) x0 = φ, (12.5)

defined on the state space X ⊆ BX = C([−r, 0],Rn), and with controls from an ab-

stract input space U ⊆ BU . An introduction to such systems is given at length in

Section 5.1, but it is assumed that the system is well defined in the sense that it has
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unique maximally defined solutions for every initial condition, and that it satisfies the

semiflow property. See Definition 7 for details. The following results establish sufficient

conditions for these properties to hold.

The following theorem is referred to as Theorem 14 in Section 5.1.

Theorem 31 Let X0 ⊆ Rn be an open set, or in the orthant cone case, a box (not

necessarily bounded) containing some or all of its sides. Let BU be a Banach space,

and let U ⊆ BU be an arbitrary Borel measurable set. Let X = C([−r, 0],X0), and let

f : X × U → Rn be a continuous function. Assume that

i) f is locally Lipschitz on X, locally uniformly on U : for any C ⊆ U and D ⊆ X

closed and bounded, there exists M > 0 such that

|f(φ, α) − f(ψ,α)| ≤M |φ− ψ| ,∀φ, ψ ∈ D,∀α ∈ C.

ii) There exists φ0 ∈ X such that for all C ⊆ U closed and bounded, the set f(φ,C) is

bounded.

Then the system (12.5) has a unique maximally defined, absolutely continuous solution

x(t) for every input β ∈ U∞ and every initial condition φ ∈ X.

Proof. It will be shown that all hypotheses are met so as to apply Theorem 4.3.1, p. 207

of Bensoussan et al. [9]. Let Ω0 ⊆ X0 be a given compact set, and let Ω = C([−r, 0],Ω0).

Let Ci := B(0, i)∩U , where i = 1, 2, 3 . . . and B(0, i) is the open ball in BU with radius

i. For every Ci, there is a constant Mi such that f(·, α) is Mi-Lipschitz on Ω, for all

α ∈ Ci. For any α ∈ U , let m(α) := inf{Mi | i such that α ∈ Ci}. Note that f(·, α)

is m(α)-Lipschitz on Ω for each α and that m is measurable. Indeed, each Mi can be

chosen to be as small as possible, and then m becomes a step function on each Ci.

Now for every fixed α ∈ U , extend the function φ 7→ f(φ, α) from Ω to all of BX ,

in such a way that the extension is also m(α)-Lipschitz. For this, let

Fi(φ, α) := inf
ψ∈Ω0

fi(ψ,α) +m(α) |φ− ψ| ,
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for each i, and let F = (F1, . . . , Fn). It is a simple exercise in analysis to verify that

for a fixed α, F (·, α) is well defined, coincides with f(·, α) on Ω, and is itself
√
nm(α)-

Lipschitz.

Fix now β ∈ U∞, and define g(t, φ) := F (φ, β(t)). It is to this function that

Theorem 4.3.1 of [9] is applied. A few conditions need to be verified: F is continuous

on each set X × (Ci − Ci−1)) and therefore measurable, which implies that g(t, φ) is

also measurable. By setting n(t) = m(β(t)), it follows that n(t) is measurable and

locally bounded (since each β|[0,T ] is contained in some Ci), and thus locally integrable.

Finally, note that F (φ0, Ci) is bounded in Rn for every i, and that therefore t→ g(t, φ0)

is locally integrable.

By Theorem 4.3.1 in [9], the system ẋ = g(t, xt) = F (xt, β(t)) has a unique maxi-

mally defined, absolutely continuous solution defined for every initial condition φ ∈ BX .

Next define for a fixed initial condition φ ∈ X, and j = 1, 2, 3, . . .:

Ωj := Range(φ) ∪ {x ∈ X0 |dist(x,Range(φ)) ≤ j and dist(x, ∂X \X) ≥ 1/j}.

Extend f from Ωj to all Rn to form Fj , applying the main step above. The solutions of

the systems ẋ = Fj(xt, β(t)), j = k, k + 1, . . ., using the same initial condition φ, must

agree with each other by uniqueness. If x1(t), x2(t) are both solutions of (12.5) with

initial condition φ and are defined on [0, T ], let j be such that x1|[−r,T ]∪x2|[−r,T ] ⊆ Ωj.

Then x1 = x2 on [−r, T ] by the argument above. This shows that x(t) is unique. The

fact that it is maximally defined follows similarly.

The following two lemmas give a proof that the function Φ(t, φ, α) = xt generated

by system (12.5) satisfies the semiflow property. The proof is straightforward, but it is

included because the result might seem counterintuitive for delay systems. Let BU be

an abstract Banach space here, and U ⊆ BU . Consider X0 ⊆ Rn, X = C([−r, 0],Rn)

as before, and f : X × U → Rn such that the triple (X,U,f) forms a well defined delay

dynamical system as in Definition 7.

Lemma 64 Let u, v be inputs in U such that u(t) = v(t), 0 ≤ t ≤ t0. Then the solutions

x(t), y(t) of the system (12.5), with initial condition φ0 and inputs u and v respectively,

satisfy x(t) = y(t),−r ≤ t ≤ t0.
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Proof: Let γ(t) := v(t + t0), and let z(t) be the solution of (12.5) with input γ

and starting condition φ1 = xt0 . Let w(t) := x(t) for −r ≤ t ≤ t0, w(t) := z(t− t0) for

t > t0. It is easy to see that w(t) is absolutely continuous, as it is built from absolutely

continuous parts. Furthermore,

w′(t+ t0) = z′(t) = f(γ(t), zt) = f(v(t+ t0), w(t+ t0)), a.e. t ≥ 0.

Thus w(t) is a solution of (12.5) with input v(t) (recall u(t) = v(t),−r ≤ t ≤ t0),

and initial condition φ0. By uniqueness, it must hold that w = y, and the conclusion

follows.

Lemma 65 (Semiflow Property) Given s, t ≥ 0, and inputs u(τ), v(τ), let x(τ), y(τ)

be the solutions of (12.5) with inputs u1(τ), u2(τ) respectively, and initial conditions φ

and xs respectively. Let z(τ) be the solution of (12.5) with initial condition φ and input

v(τ) := u1(τ), 0 ≤ τ ≤ s, v(τ) := u2(τ − s), τ > s. Then zs+t = yt.

Proof. By the previous Lemma, zs = xs. Note that w(t) := z(s + t) is a solution of

(12.5) with input u and initial condition xs:

w′(τ) = z′(s+ τ) = f(v(s+ τ), z(s + τ) = f(u2(τ), w(τ)),∀τ ≥ 0.

Thus w = y by uniqueness. In particular, yt = wt = zs+t.
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